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ABSTRACT
In this study, a Recurrent Neural Network (RNN) architecture model is used to analyse and compare 
the seven most widely used first-order stochastic gradient-based optimization algorithms. Adaptive 
Moment Estimation (ADAM), Root Mean Square Propagation (RMSprop), Stochastic Gradient 
Descent (SGD), Adaptive Gradient (AdaGrad), Adaptive Delta (AdaDelta), Nesterov-accelerated 
Adaptive Moment Estimation (NADAM), and Maximum Adaptive Moment Estimation (AdaMax) 
are the optimization techniques that have been studied. The study used the body motion datasets 
from the University of California-Irvine (UCI) Machine Learning (ML) datasets. This experiment 
demonstrates the capabilities of various combinations of optimizer models, long short-term memory 
(LSTM) architecture, activation functions, and learning rate. The main aim is to understand how 
good each optimizer performs in test accuracy and feasible training time behaviour over various 
learning rates and activation functions. The outcomes vary by setting, with some achieving higher 
accuracy and shorter training sessions than others. The AdaGrad model, which uses exponential and 
sigmoid activation functions with a learning rate of 0.001, has a training time of 17.1 minutes and 
a test accuracy of 78.31%, making it the top-performing configuration. The exponential function 
is an activation function that consistently outperforms other models and optimization algorithms. 

It consistently delivers high accuracy and 
minimal running time across numerous models 
and optimizers, while the Softmax activation 
function continuously underperforms.

Keywords: Accuracy, activation function, body 
motion datasets, gradient descent (GD), learning rate, 
long short-term memory (LSTM), Recurrent Neural 
Network (RNN), running time
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INTRODUCTION

Selecting the optimal optimization algorithm is one of the effective approaches to enhance 
the learning process in deep learning (DL) algorithm. This work focuses on the application 
of optimization methods based on the gradient descent (GD) approach to optimize the 
DL architecture. DL relies heavily on optimization since the model optimizer continually 
updates and calculates the parameters that affect model training and output. The purpose is 
to follow the steepest descent direction, which is provided by the negative gradient, in order 
to approximate or reach the optimal value and optimize the objective function (Mehmood 
et al., 2023), DL optimization problems are complicated and call for more decomposition. 
Three stages can be identified in the growth of optimization. The first stage is to get the 
algorithm start running and have it arrived at a logical conclusion, like a stationary point. 
Making the algorithm converge as rapidly as possible is the second stage. Making sure 
the algorithm converges to a result with a low objective value, like a global minimum, is 
the third stage (Sun, 2019). It is important to remember that getting good test accuracy 
requires a further step that is outside the purview of optimization. The three categories 
of convergence, convergence speed, and global quality as in Figure 1 are used to group 
optimization problems. 

Machine learning (ML) is a subset of artificial intelligence dedicated to creating 
algorithms that allow computers to learn from data and make predictions or judgments 
autonomously, without explicit programming (Ethem, 2020). The GD is widely employed 
in ML and other mathematical applications to optimize a cost function. The cost function 
calculates the discrepancy between a model projected and actual output. The objective of 
GD is to minimize the cost function by modifying the model's parameters, such as weights 

Figure 1. Optimization issues (Sun, 2019)
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and biases (Chandra et al., 2022). The concept of GD is based on the idea of finding the 
steepest descent direction of the cost function and moving the parameters in that direction 
to reach a minimum value of the cost function (Seeli & Thanammal, 2024). This process 
involves computing the gradient of the cost function with respect to the parameters and 
taking a step in the opposite direction of the gradient by repeating this process iteratively, 
GD can converge to a minimum of the cost function (Haji & Abdulazeez, 2021).

Comparing different GD optimizers is crucial in DL because it allows for the selection 
of the most effective and efficient optimization algorithm for a specific problem. Each 
optimizer has its strengths and weaknesses, and understanding these differences can 
significantly impact the performance of the model. For instance, while Batch GD is simple 
and easy to implement, it can be slow and computationally expensive for large datasets. 
SGD, on the other hand, is faster but can be noisy and may not converge well (Schaul et al., 
2013). Adaptive optimizers like ADAM and its variants, however, can adapt to the changing 
nature of the optimization problem, making them more robust and effective (Kingma & Ba, 
2015). By comparing these optimizers, researchers and practitioners can identify the best 
approach for their specific problem, ensuring optimal performance and faster convergence. 
This comparison is particularly important in modern DL applications, where large datasets 
and complex models require efficient and effective optimization techniques.

Neural network (NN) is commonly employed to tackle non-convex problems, but 
choosing an appropriate optimization method can be difficult to locate the global optimum in 
these networks. This difficulty arises from the need to estimate a vast quantity of parameters 
within a high-dimensional search space. An ineffective optimization strategy may lead the 
network to remain trapped in local minimum while training, preventing any improvement 
(Dogo et al., 2018). Moreover, because of ADAM's stability and performance in a wide 
range of case scenarios, several NN researchers instinctively favour it in all circumstances. 
Consequently, it is essential to conduct a study to investigate how optimizers operate in 
relation to the model and dataset utilized to gain a deeper understand of their behaviours. 

As a result, the contribution of this paper is an experimental comparison of the 
performance of seven well-known and widely used GD optimization algorithms on a RNN 
model. RNN is One type of neural network that can process sequential inputs, such as 
time series and natural language. The RNN model uses the body motion dataset from the 
UCI ML datasets with several learning rates, and activation functions. Using convergence 
speed, accuracy, and loss function as performance metrics, this comparison shows how 
well and consistently each optimizer handled the problem of locating the proper and ideal 
minima throughout training. 

BACKGROUND OF STUDY AND RELATED WORK

GD is a first-order iterative optimization technique that moves in the opposite direction as 
the gradient to find a local minimum of a loss function (Chandra et al., 2022). On the other 
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hand, gradient ascent—moving in the direction of the gradient—leads to a local maximum 
(Hallén, 2017). By modifying weights during backpropagation to reduce loss and address 
the curse of dimensionality, GD plays a critical role in DL optimization (Goodfellow et 
al., 2016). 

SGD, AdaGrad, AdaDelta, RMSprop, ADAM, AdaMax, and NADAM are prominent 
optimization algorithms utilized for training machine learning models, including neural 
networks, with SGD adjusting parameters according to gradients derived from individual 
or small batches of instances (Schaul et al., 2013). AdaGrad is an algorithm that adapts 
the learning rate of each model parameter based on historical gradient information (Duchi 
et al., 2011; Solanke & Patnaik, 2020). AdaDelta is a variant of AdaGrad that uses a 
moving window of gradient updates instead of accumulating all past gradients (Zeiler, 
2012). RMSprop is a variant of the GD algorithm that uses a decaying average of partial 
gradients to adapt the step size for each parameter (Hinton & Tieleman, 2012; Zou et 
al., 2019). ADAM is an adaptive learning rate optimization algorithm that combines the 
advantages of both AdaGrad and RMSprop (Kingma & Ba, 2015; Yi et al., 2020). AdaMax 
is a variant of ADAM that is based on the infinity norm (Fatima, 2020). NADAM is a 
variant of ADAM with Nesterov momentum (Adem & Kiliçarslan, 2019; Sutskever et al., 
2013). These algorithms are utilized in DL packages like Caffe, Lasagne, TensorFlow, and 
Keras. To obtain improved generality, researchers continue to create optimizers, as seen 
in (Lv et al., 2017).

RNN utilize memory to integrate previous inputs, hence modifying the present input 
and result (Karna et al., 2024). Both unrollable finite impulse networks and temporally 
dynamic infinite impulse networks (Sherstinsky, 2020) are examples of RNN, which are 
characterized by infinite impulse response (Miljanovic, 2012). Like Gated Recurrent Units 
(GRUs), commonly referred to as feedback neural networks (FNN), these networks may 
have memory or gated states (Hochreiter & Schmidhuber, 1997).

Using different numbers of iterations and particular test function values on a 
stacked denoising autoencoder (SDA) architecture, based on convergence time, number 
fluctuations, and parameter update rate, authors in (Yazan & Talu, 2017) examined a 
comparison of optimization techniques based on SGD, specifically ADAM, AdaGrad, 
AdaDelta, RMSprop, SGD, and SGD with momentum. According to their experimental 
results in terms of rapid convergence, AdaDelta outperformed the other optimizers. The 
datasets they used for their tests are unknown. The author of (Papamakarios, 2014) used 
the logistic and Softmax regression on the synthetic and Modified National Institute of 
Standards and Technology (MNIST) handwritten digits datasets, respectively, to compare 
the performance of four GD-based variants on the limited convex objective fitting problem: 
GD, stochastic GD, semi-SGD, and stochastic average descent. In the authors' two trials, 
SGD outperformed SG in general, but the two hybrid forms achieved superior accuracy in 
more reasonable amounts of time. In a similar vein (Hallén, 2017) conducted a performance 
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comparison between GD and SGD using the MNIST ML dataset for linear regression 
and multinomial logistic regression, using accuracy, training, and convergence time as 
performance variables. In a recent study (Ruder, 2016), gave a simple overview of how 
modern GD optimization techniques behave.

While pointing out difficulties in optimizing GD (Shalev-Shwartz et al., 2017), experts 
advise flexible learning rates for complex neural network training. These difficulties include 
slow training, vanishing gradients as a result of insufficient conditioning, low signal-to-noise 
ratio (SNR), and limited gradient informativeness. However, a comprehensive evaluation 
of the impact of these popular optimization algorithms on an RNN architecture using image 
classification datasets appears to be lacking in existing studies.

Based on the related works, several types of studies can be conducted to further explore 
the optimization of neural networks. These studies can involve conducting a comprehensive 
comparison of various optimization algorithms on RNN using other datasets, developing 
a theoretical framework for selecting the most suitable optimizer for training RNN, and 
conducting experiments using various datasets and NN architectures to evaluate the 
performance of different optimizers. Additionally, studies can focus on investigating 
and developing new optimization techniques specifically designed for DL applications, 
analyzing the scalability and efficiency of different optimizers in large-scale neural network 
training, and optimizing NN with specific architectures. Furthermore, studies can explore 
the use of hybrid optimizers and ensemble methods to combine the strengths of different 
optimizers, investigate the performance of optimizers on non-convex problems, and study 
the performance of optimizers on sparse and large-scale datasets. These studies can help 
in understanding the performance of different optimizers, developing new optimization 
techniques, and improving the efficiency and accuracy of neural network training.

METHODOLOGY AND EXPERIMENTAL SETUP 

This study used the LSTM networks, a version of RNN architecture specifically engineered 
to proficiently learn and retain long-range dependencies in sequential input (Hochreiter & 
Schmidhuber, 1997). On the developed model, the performance of seven well-known SGD 
optimization techniques was also demonstrated. This research utilized the Mobile Health 
(MHEALTH) dataset from the UCI ML repository, which is a body motion dataset intended 
to evaluate methodologies for human behavior analysis through multimodal body sensing 
(Banos et al., 2014) . The optimizers model examined were SGD, RMSProp, ADAM, 
AdaGrad, AdaDelta, AdaMax, and NADAM. For each trial, identical hyperparameter 
settings were applied. The body motion dataset was used to train the complete network 
across 100 epochs.

The MHEALTH dataset was utilised to train the LSTM architecture. The selected LSTM 
model underwent rigorous evaluation and analysis on the MHEALTH body motion dataset 
to determine its effectiveness in extracting meaningful information from the body motion. 
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Various metrics, including training time and test accuracy, were assessed to quantify the 
LSTM architecture performance. The impact by experimenting with various combinations 
of learning rates, activation functions, and LSTM architectures was investigated. This 
analysis involved training the LSTM model with different optimizers. Values on subsets 
of the MHEALTH body motion dataset and observing the corresponding training and test 
accuracy changes. Training dataset is presented to the model during training. Setting all the 
configurations with aims to evaluate and compare the performance of seven widely used 
first-order stochastic gradient-based optimization algorithms within a RNN framework. 
specifically focuses on how these optimizers — ADAM, RMSprop, SGD, AdaGrad 
AdaDelta, NADAM, and AdaMax—perform in terms of test accuracy and training time 
when applied to a body motion dataset. The objectives to be achieved are to identify which 
optimizer yields the best results by experimenting with various combinations of learning 
rates, activation functions, and LSTM architectures. 

Data Collection - UCI Body Motion Dataset

In this study, the dataset used to measure and compare the performance of optimization 
algorithms was the motion dataset. The MHEALTH dataset was devised to benchmark 
techniques dealing with human behaviour analysis based on multimodal body sensing. 
This dataset consisted of 23 features (columns). The number of samples determined was 
100,000 and there was no missing data in the dataset. The data collected for each subject 
was stored in a different log file. There were 10 people doing 12 common daily activities, 
such as standing still, sitting, and relaxing, lying down, walking, climbing stairs, waist 
bends forward, frontal elevation of arms, knees bending, cycling, jogging, running, and 
jump front/back, and each activity was recorded for 1 minute. For one object, it took 12 
minutes to collect the data for 12 activities. Each file contained the samples (by rows) 
recorded for all sensors (by columns).

RNN Model Setup

Three LSTM network architecture models were created for this experimental investigation 
to observe the variations in the weight values produced by each architecture, which were 
1) one LSTM as default, 2) two LSTMs, and 3) added dropout model between the two 
LSTMs.  The LSTM architecture models in this study can be seen from Figures 2 till 4. 

The network architecture in this study has 23 input features (m1, m2, m3, ... , m23) with 
input representation: : 𝑋𝑋𝑡𝑡  ∈ ℝ23    at each time step, t. The following is a mathematical model 
that represents the LSTM network architecture Model-1 (Figure 2).

LSTM layer (hidden layer), the LSTM unit receives the input and the previous hidden 
state (t-1) and cell state (t-1). The mathematical model or equation for the main LSTM 
computation is using the equation (Hochreiter & Schmidhuber, 1997):
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 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    

 [1] 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    

 [2]
 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    

 [3]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    

 [4]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    
 [5]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)     [6]

The LSTM accepts the current input vector 𝑋𝑋𝑡𝑡   the previous hidden state  𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                   (1) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)        (2) 

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐)       (3) 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ⨀ �̃�𝐶t        (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)         (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⨀  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)    

, and 
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Figure 2. Model-1 (One hidden layer with one long short-term memory layer [LSTM])
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are learned weight parameters for every gate, and b_f, b_i, b_c, b_o are corresponding 
bias vector.

Fully connected layer receives t from the LSTM layer and processes it with weights 
and biases.

     𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎt + 𝑏𝑏𝑓𝑓𝑐𝑐 )   [7]

where, Wfc is referred to  weight of fully connected layer and bfc is bias.

Dense layer (output) takes the output of the fully connected layer and maps it to the 
output using the last weight and bias.

𝑦𝑦 = (𝑊𝑊𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 𝐻𝐻 + 𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 )    [8]

where, Wdense  is referred to weight of output layer and bdense is bias.

A representation of the second network architecture that was utilized in the research 
is shown in Model -2, which can be found in this following Figure 3. Model -2, which can be found in this following Figure 3.  

 

 
 
 
 
 
 

 

 

Figure 3. Model-2 (Two hidden  
Figure 3. Model-2 (Two hidden layers with two long short-term memory [LSTM] layers)

The LSTM architecture models, Model-2 and Model-3 (Figures 3 and 4), are essentially 
the same as the LSTM architecture model, Model-1, for computations and mathematical 
models; however, they have an additional hidden layer. The following is a mathematical 
model that represents the LSTM network architecture Model-2 (Chen et al., 2022; 
Hochreiter & Schmidhuber, 1997; Van Houdt et al., 2020).
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Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 
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(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, input weights LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, recurrent weights 
LSTM Layer 1:            ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, and bias LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, using the sigmoid activation σ: LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

. This 
hidden state is transformed by a fully connected layer into a new feature 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 using ReLU 
activation: 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 where 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 and 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 are the weights and bias of 
the dense layer. The second LSTM layer uses this 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 along with its previous hidden state 
ℎ𝑡𝑡

(2) , weights 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, and bias 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 to compute: 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

. Finally, 
the model output is calculated as: Dense Layer (Output):  𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡

(2) + 𝑏𝑏𝑜𝑜)  with 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 and 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

representing the 
output layer’s weights and bias. This design enables the model to learn both short- and 
long-term dependencies effectively. Henceforth, the network architecture used in this study 
is LSTM model-3, which can be seen in the following Figure 4.

Figure 4 is the LSTM architecture Model-3, which is essentially identical to the previous 
one, with the exception that a dropout layer is used in place of the middle layer to avoid 

Figure 4. Model-3 (two hidden layers with two long short-term memory [LSTM] layers and one dropout layer)
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overfitting. The following mathematical model represents the LSTM network architecture 
Model-3 (Chen et al., 2022; Hochreiter & Schmidhuber, 1997; Van Houdt et al., 2020).

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

 [13]LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

 [14]
LSTM layer 1:      ℎ𝑡𝑡

(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

 [15]

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜)  [16]

where,  the hidden state LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

using the current input LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, the previous hidden state  
LSTM Layer 1:            ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, weight matrices LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 and LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, and a bias term LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

. Then, a dropout layer is applied to 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 producing a new intermediate state 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

by randomly dropping  units based on the 

dropout probability 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 

. This result is fed into the second LSTM layer, which produces 

LSTM layer 1:      ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) +  𝑏𝑏1)             (13) 

Dropout layer:            ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝)  ; 𝑝𝑝 is dropout probability           (14) 

LSTM layer 2:      ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) +  𝑏𝑏2)             (15) 

Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                 (16 using 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

, and 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

. The final output Dense layer (Output):    𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜)  is calculated through a dense layer with weights 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

 and bias 

LSTM Layer 1:            ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1�               (9) 

Fully Connected Layer:          𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐 )              (10)

   

LSTM Layer 2:   ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) +  𝑏𝑏2)             (11) 

Dense Layer (Output):   𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜                            (12) 

 

.

Optimization Techniques

Experiments are conducted by comparing seven different optimization methods, namely 
SGD, ADAM, RMSprop, AdaGrad, AdaDelta, NADAM, and AdaMax. Each GD based 
optimization method has a unique approach in updating the model parameters. The main 
equations for the methods used in this study are as follows: 

The SGD method is a basic form of gradient-based optimization. The mathematical 
equation for all the GD method is using this following equations (Ruder, 2016):

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)   [17]

where, the model parameters at a given iteration (denoted as 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)  ) are updated to 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)  
by moving in the opposite direction of the gradient of the loss function. This update is 
controlled by a learning rate (η), a small positive value that determines the size of each step 
towards minimizing the loss. The gradient, represented as 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)  , indicates how much 
the loss changes with respect to the current parameters, guiding the optimization process. 
AdaGrad adjusts the learning rate for each parameter based on the previous gradient: 

𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡)  [18]
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The AdaGrad optimizer improves the standard gradient descent method by adapting the 
learning rate for each model parameter based on the historical accumulation of gradients. 
At each training step, it calculates the gradient of the loss function with respect to 
the current parameters, noted as 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) . Instead of applying a fixed learning rate, 
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where, 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡)  is the gradient of the loss function with respect to the model parameters at 
iteration and 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡)  represents the direction and rate of increase of the loss function at 
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influence the past squared gradients 
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𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡)                 (21) 
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the learning rate, 𝜖𝜖   is a small constant to avoid division by zero, and 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  
𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡   denotes element-

wise multiplication. ADAM combines momentum and RMSProp for adaptive learning 
rate adjustment (Kingma & Ba, 2015; Ruder, 2016): 
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estimate, where 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡)  is the current gradient and β1 is the exponential decay rate for the 
gradient moving average. Equation [25] computes the second moment estimate, where β2 
is the decay rate for the squared gradients. Since both 𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 +  (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡               (24) 
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 𝑚𝑚𝑡𝑡   

 are initialized at zero, bias-
corrected estimates are used as shown in Equation [26]. The model parameters are updated 
using Equation [27], where 

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡)                 (21) 

 

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2 ] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2                        (22) 
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𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡)                 (21) 
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 ⨀ 𝑔𝑔𝑡𝑡      are the current and updated parameters, η is the 

learning rate, and 𝜖𝜖   is a small constant added for numerical stability. This combination of 
momentum and adaptive learning rate adjustment makes Adam particularly effective for 
deep learning tasks. AdaDelta overcomes gradient accumulation in AdaGrad by using a 
moving average of the gradients (Ruder, 2016):

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1
2 ] +  (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2                         (28) 
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2 ] +  (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2                         (28) 
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 [29]
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2 ] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2  [30]

The algorithm maintains a decaying average of past squared gradients as shown in 
Equation [28], where 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡)  is the gradient at the current time step, and 

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡)                 (21) 
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�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡     

 is a decay constant 
that controls how much weight is given to past values. Parameter updates are calculated 
using Equation [29], where 
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2 ] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2  represents the update applied to the model parameters. 

This formulation scales the raw gradient based on the ratio between the root mean square of 
previous updates and the current average of squared gradients, with 𝜖𝜖   (a small constanta) 
included to prevent division by zero and enhance numerical stability. Updates the moving 
average of squared parameter updates using Equation [30], where 
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2 ] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2  is the element-

wise square of the current update. This recursive structure ensures consistent and adaptive 
parameter updates over time.



PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Adamax is an ADAM variant based on norm infinity (ℓ ⋈ ), the mathematical equation 
is using this following equations (Ruder, 2016) :
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, which is the 
exponentially weighted average of past gradients (also known as the first moment), and 
𝑢𝑢𝑡𝑡 , which is the exponentially weighted average of past squared gradients (the second 
moment). These averages help smooth out the noise in the gradient updates. To improve 
stability early in training, NADAM uses a bias- corrected version of the first moment, noted 
as 
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𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −  
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡�  , which also incorporates a lookahead gradient term inspired by Nesterov momentum. 

The constants β₁ and β₂ control the decay rates of these moving averages and are usually 
set close to 1. The learning rate, symbolized by η, determines how big each step should be 
when updating the parameters, and 𝜖𝜖   is a small value added to the denominator to avoid 
division by zero, ensuring numerical stability.
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Activation Functions

Five activation functions—Sigmoid, Softmax, ReLU, tanh, and Exponential—were 
employed in this study to maximize the RNN model's performance. Particularly in deciding 
how information is processed and transmitted in each neuron layer, each of these functions 
has a distinct function and set of properties in the model training process. Sigmoid is perfect 
for binary classification because it compresses outputs between 0 and 1. Nevertheless, it 
slows down model updates due to the vanishing gradient issue. The function for all the 
activation function variant is using this following equations (Szandała , 2020):

σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
   [38]

The sigmoid function σ (σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
  ) is the output of the activation function, mapping any real- 

valued input σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
   to a value between 0 and 1. The input σ (𝑀𝑀) =  

1
1 +  𝑑𝑑−𝑀𝑀

   is typically the weighted sum of 
inputs to a neuron, given by σ (𝑀𝑀) =  

1
1 +  𝑑𝑑−𝑀𝑀

   = w₁x₁ + w₂x₂ + ... + wnxn + b, where wᵢ is the weight of 
the i-th input, xᵢ is the i-th input feature, and b is the bias term. The constant e is Euler’s 
number, approximately 2.71828, and 

σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
  
 is the exponential function with exponent -σ (𝑀𝑀) =  

1
1 +  𝑑𝑑−𝑀𝑀

  , 
which decreases rapidly as σ (𝑀𝑀) =  

1
1 +  𝑑𝑑−𝑀𝑀

   increases.  
Softmax transforms inputs into a probability distribution, generalizing sigmoid for 

multi-class classification. Its downside is overfitting, as it might give excessive probabilities. 
Softmax is defined as:

Softmax (𝑀𝑀𝑖𝑖) =  
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

  [39]

where, (σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
  ᵢ) is the output for the i-th class, representing the predicted probability that 

the input belongs to class i. The term σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
  ᵢ refers to the logit or raw output score from the 

model for the i-th class, (before the activation). The constant 
Softmax (𝑀𝑀𝑖𝑖) =  

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 
 denotes Euler’s number, 

approximately equal to 2.71828. The expression 
Softmax (𝑀𝑀𝑖𝑖) =  

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

  is the exponential of the logit xᵢ, which 
scales the output positively. The denominator 

Softmax (𝑀𝑀𝑖𝑖) =  
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 
 is the sum of the exponentials of all 

logits across all classes 
Softmax (𝑀𝑀𝑖𝑖) =  

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 
 used to normalizes the output so that they add up to 1.

By only activating positive values, the ReLU resolves the vanishing gradient problem 
and accelerates convergence. It has to deal with the fading ReLU issue, though, where 
neurons might stop working. This function is formulated as:

ReLU(𝑀𝑀) = � 𝑀𝑀, 𝑀𝑀 > 0
𝛼𝛼0, 𝑀𝑀 ≤ 0  [40]
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where, ReLU(σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
  ) is the output of the activation function applied to the input x, which 

typically represents the weighted sum of inputs to a neuron. The symbol x is the input 
value, and α is a small positive constant (usually around 0.01) called the leakage coefficient, 
which allows a small, non-zero gradient when x is negative. This helps avoid the “dying 
ReLU” problem by ensuring that neurons can still update during training even when they 
receive negative inputs.

Similar to sigmoid, tanh improves representation by having an output range of -1 to 
1. The vanishing gradient still affects it, particularly at extreme values. This function is 
defined as:

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
  [41]

where, σ (𝑀𝑀) =  
1

1 +  𝑑𝑑−𝑀𝑀
   represents the input value, typically the weighted sum of inputs to a neuron. 

The symbol 
Softmax (𝑀𝑀𝑖𝑖) =  

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 
 stands for Euler’s number, approximately equal to 2.71828. The terms 

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
  

and 
tanh(𝑀𝑀) =

𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
  are the exponential functions of x and -x, respectively. The numerator 

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
  

gives the difference of exponentials, while the denominator 
tanh(𝑀𝑀) =

𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
 
 ensures the output 

remains bounded between -1 and 1.
Exponential learning speeds up learning by exponentially magnifying input values, 

but it also runs the danger of inflating gradients, which can cause training instability. 
Exponential defined as:

Exponential (𝑀𝑀) = 𝑑𝑑𝑀𝑀    [42]

where, x represents the input value, typically the weighted sum of inputs to a neuron. 
The symbol 

Softmax (𝑀𝑀𝑖𝑖) =  
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 
 stands for Euler’s number (~2.71828) and the terms 

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
  grows rapidly with 

positive x and approaches zero as x becomes negative.

Experimental Configuration

Experiments were conducted to compare several optimization methods discussed, such as 
ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax. The RNN model 
consisted of an input layer that was then forwarded to the LSTM architecture, and the last 
layer was the output layer. Based on Tabel 1, the training data was processed for a batch 
size of 32 sample records and 100 epochs. The training data was compiled with the learning 
rate of 0.1, 0.01, and 0.001, respectively. The network structure is shown in Table 1.
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Table 1 
Recurrent Neural Network structure specification

Description Value
Learning rate 0.1; 0.01; 0001
Number of epoch 100
Batch size 32
Number of training 80% : 80,000
Number of validation 20% : 20,000
Optimizer ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax
Activation function Sigmoid, Softmax, ReLU, tanh, and Exponential

Note. ADAM = Adaptive Moment Estimation; RMSProp = Root Mean Square Propagation; SGD = Stochastic 
Gradient Descent; AdaGrad = Adaptive Gradient Algorithm; AdaDelta = Adaptive Delta; NADAM = Nesterov-
accelerated Adaptive Moment Estimation; AdaMax = Adaptive Moment Estimation with Infinity Norm

RESULTS AND DISCUSSION

The purpose of the experiment was to analyze each configuration of optimizers, which 
included ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax with three 
LSTM network architecture models, five activation functions, and three learning rates (α), 
respectively. The comparison results shown in Table 2 are the training process or training 
time in minutes, abbreviated by "TT", and the test accuracy in percentages, abbreviated 
by "TA", for every configuration. 

This study systematically evaluated the performance of various optimization algorithms 
using RNN architecture, specifically LSTM networks. The implementation was carried 
out using the TensorFlow DL library and Python programming language. The experiments 
were performed on a Dell personal computer equipped with an Intel Core i7 processor, 
16 GB of RAM, and an NVIDIA GeForce GTX 1660 graphics card, ensuring a robust 
computational setup. Performance evaluation was based on test accuracy and training 
time, with results systematically compiled into tables summarizing the impact of different 
optimizers and hyperparameter configurations such as learning rates (0.1, 0.01, and 0.001) 
and five activation functions (Sigmoid, Softmax, ReLU, tanh, and Exponential). Each trial 
maintained a consistent batch size of 32 samples, ensuring uniform data processing across 
all experiments for comparability. 

Table 2 indicates that testing accuracy is determined by the model evaluation outcomes 
following training with the test dataset. The test accuracy value is calculated by splitting 
the dataset into two sections: the training process (80%) and the testing process (20%). 
The model is trained using training data with various parameters (optimizer, learning rate, 
activation function) during the training process. Following training, the model is tested 
using the test dataset (test set). By contrasting the actual label in the test dataset with the 
model prediction, the degree of accuracy, also known as test accuracy, is determined.
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Table 2 
Performance comparisons of studied optimization algorithms

Optimizer
model

LSTM
architecture

Activation 
function

α = 0.1 α = 0.01 α = 0.001
TT 

(min)
TA
(%)

TT 
(min)

TA 
(%)

TT 
(min)

TA 
(%)

ADAM

Model-1

Sigmoid 81.56 78.31 73.73 76.38 76.43 78.29

Softmax 17.96 1.83 78.33 1.83 80.18 1.83

ReLU 79.83 78.31 79.24 78.31 79.67 78.31

tanh 17.8 78.31 17.91 78.31 17.87 78.31

Exponential 17.84 78.31 17.89 78.31 17.95 78.31

Model-2

Sigmoid 32.04 78.31 31.8 78.31 31.66 78.31

Softmax 31.74 1.83 31.81 1.83 31.78 1.83

ReLU 31.97 78.31 32.47 78.31 34.4 78.31

tanh 34 78.31 34.28 78.31 34.14 78.31

Exponential 34.03 78.31 33.53 78.31 34.29 78.31

Model-3

Sigmoid 32.05 75.09 31.17 75.10 31.37 75.11

Softmax 31.53 1.83 31.66 1.83 31.51 1.83

ReLU 31.46 78.31 31.63 78.31 31.6 78.31

tanh 31.49 78.31 31.47 78.31 31.55 78.31

Exponential 31.6 78.31 31.55 78.31 31.56 78.31

RMSprop

Model-1

Sigmoid 17.81 78.31 17.72 78.31 18.03 78.31

Softmax 18.02 1.83 18.02 1.83 18.1 1.83

ReLU 18.01 78.31 18.01 78.31 17.89 78.31

tanh 17.9 78.31 17.99 78.31 17.99 78.31

Exponential 18 78.31 18 78.31 18.02 78.31

Model-2

Sigmoid 34.28 78.31 33.84 78.31 34.16 78.31

Softmax 34.03 1.83 33.91 1.83 33.16 1.83

ReLU 34.18 78.31 33.87 78.31 34.78 78.31

tanh 34.35 78.31 33.87 78.31 33.04 78.31

Exponential 33.05 78.31 33.11 78.31 33.08 78.31

Model-3

Sigmoid 31.01 78.31 30.97 75.07 30.9 75.06

Softmax 31.01 1.83 31.04 1.83 31.05 1.83

ReLU 31.05 78.31 31.11 78.31 31.21 78.31

tanh 31.09 78.31 31.39 78.31 31.07 78.31

Exponential 31.12 78.31 31.25 78.31 31.52 78.31
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Optimizer
model

LSTM
architecture

Activation 
function

α = 0.1 α = 0.01 α = 0.001
TT 

(min)
TA
(%)

TT 
(min)

TA 
(%)

TT 
(min)

TA 
(%)

SGD

Model-1

Sigmoid 18 78.31 18.01 78.31 18.04 78.31

Softmax 18.01 1.83 18.01 1.83 18.01 1.83

ReLU 18 78.31 18 78.31 18 78.31

tanh 18.01 78.31 18.01 78.31 18.01 78.31

Exponential 18.01 74.76 18.01 74.85 18.01 74.87

Model-2

Sigmoid 34.16 78.30 34.12 78.30 33.83 78.30

Softmax 33.35 1.83 33.03 1.83 33.03 1.83

ReLU 33.02 78.31 32.74 78.31 30.10 78.31

tanh 30.2 78.31 30.12 78.31 30.07 78.31

Exponential 30.25 78.28 30.16 78.29 30.33 78.29

Model-3

Sigmoid 31.13 78.24 30.99 78.26 30.98 78.27

Softmax 30.76 1.83 31.07 1.83 31.43 1.83

ReLU 31.32 78.31 31.64 78.31 31.7 78.31

tanh 32.01 78.31 32.37 78.31 32.61 78.31

Exponential 32.89 78.31 32.30 78.31 31.97 78.31

AdaGrad

Model-1

Sigmoid 17.06 78.31 17.02 78.31 17.02 78.31

Softmax 17.01 1.83 17.08 1.83 17.26 1.83

ReLU 17.02 78.31 17.23 78.31 17.16 78.31

tanh 17.05 78.31 17.04 78.31 17.01 78.31

Exponential 17.03 78.31 17.02 78.31 17.01 78.31

Model-2

Sigmoid 34.47 78.30 34.36 78.31 34.96 78.31

Softmax 34.82 1.83 34.95 1.83 35.01 1.83

ReLU 34.98 78.31 35.2 78.31 35.11 78.31

tanh 35.18 78.31 33.77 78.31 33.83 78.31

Exponential 33.85 78.29 34.02 78.29 36.26 78.29

Model-3

Sigmoid 32.76 78.31 32.88 78.31 32.83 78.31

Softmax 32.29 1.83 31.99 1.83 31.99 1.83

ReLU 32.78 78.31 32.77 78.31 32.01 78.31

tanh 31.88 78.31 31.86 78.31 32.06 78.31

Exponential 32.02 78.31 32.1 78.31 32.13 78.31

Table 2 (continue)
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Optimizer
model

LSTM
architecture

Activation 
function

α = 0.1 α = 0.01 α = 0.001
TT 

(min)
TA
(%)

TT 
(min)

TA 
(%)

TT 
(min)

TA 
(%)

AdaDelta

Model-1

Sigmoid 20.63 78.31 21.4 78.31 21.03 78.31

Softmax 21.03 1.83 21.04 1.83 21.1 1.83

ReLU 21.04 78.31 21.09 78.31 21.03 78.31

tanh 21.06 78.31 21.03 78.31 21.03 78.31

Exponential 21.10 74.92 21.06 74.93 21.09 74.94

Model-2

Sigmoid 34.58 78.31 34.17 78.31 34.33 78.31

Softmax 34.67 1.83 35.03 1.83 34.71 1.83

ReLU 34.90 78.31 34.94 78.31 34.93 78.31

tanh 35.01 78.31 33.06 78.31 33.37 78.31

Exponential 33.3 78.29 33.58 78.29 35.92 78.29

Model-3

Sigmoid 31.48 78.31 31.53 78.31 31.13 78.31

Softmax 31.62 1.83 31.85 1.83 31.63 1.83

ReLU 32.77 78.31 32.8 78.31 32.69 78.31

tanh 32.15 78.31 31.68 78.31 31.42 78.31

Exponential 31.16 74.73 31.42 74.66 31.42 74.66

NADAM

Model-1

Sigmoid 21.99 78.31 21.17 78.31 21.05 78.31

Softmax 21.08 1.83 21.06 1.83 21.09 1.83

ReLU 21.06 78.31 21.11 78.31 21.13 78.31

tanh 21.08 78.31 21.11 78.31 21.09 78.31

Exponential 21.1 78.31 21.28 78.31 20 78.31

Model-2

Sigmoid 33.38 78.31 33.37 78.31 33.46 78.31

Softmax 33.98 1.83 34.05 1.83 34.05 1.83

ReLU 34.05 78.31 34.03 78.31 34.04 78.31

tanh 34.53 78.31 35.58 78.31 35.52 78.31

Exponential 35.18 78.31 34.99 78.31 34.90 78.31

Model-3

Sigmoid 31.97 75.06 31.17 75.10 31.28 75.09

Softmax 31.54 1.83 31.61 1.83 31.73 1.83

ReLU 31.64 78.31 31.46 78.31 31.36 78.31

tanh 31.65 78.31 31.8 78.31 31.94 78.31

Exponential 31.14 78.31 31.36 78.31 32.11 78.31

Table 2 (continue)
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Optimizer
model

LSTM
architecture

Activation 
function

α = 0.1 α = 0.01 α = 0.001
TT 

(min)
TA
(%)

TT 
(min)

TA 
(%)

TT 
(min)

TA 
(%)

AdaMax

Model-1

Sigmoid 17.07 78.24 17.06 78.27 17.03 78.29

Softmax 17.83 1.83 17.86 1.83 18.03 1.83

ReLU 18.04 78.31 18.07 78.31 18.69 78.31

tanh 18.97 78.31 20.01 78.31 20.1 78.31

Exponential 20.74 78.31 20.97 78.31 21.45 78.31

Model-2

Sigmoid 33.90 78.29 33.27 78.25 33.53 78.27

Softmax 33.72 1.83 33.86 1.83 33.94 1.83

ReLU 33.83 78.31 33.72 78.31 33.89 78.31

tanh 34.28 78.31 35.49 78.31 35.34 78.31

Exponential 34.74 78.30 34.6 78.28 34.63 78.28

Model-3

Sigmoid 31.25 78.21 31.13 77.74 31.23 78.20

Softmax 31.68 1.83 31.5 1.83 31.63 1.83

ReLU 31.36 78.31 31.50 78.31 31.39 78.31

tanh 31.26 78.31 31.45 78.31 31.5 78.31

Exponential 31.69 75.46 31.98 76.28 31.92 76.56

Note. TT = Training time; TA = Training accuracy; ADAM = Adaptive Moment Estimation;  
RMSProp = Root Mean Square Propagation; SGD = Stochastic Gradient Descent; AdaGrad = Adaptive Gradient 
Algorithm; AdaDelta = Adaptive Delta; NADAM = Nesterov-accelerated Adaptive Moment Estimation;  
AdaMax = Adaptive Moment Estimation with Infinity Norm

Enclosed is the comprehensive summary of the analysis conducted on each optimizer: 

1. The best performance of the ADAM optimizer is found using the LSTM architecture 
Model-1 with the tanh activation function, and the learning rate of 0.1, respectively. 
Moreover, the ADAM optimizer performs well using the sigmoid, tanh, and exponential 
activation functions, exhibiting the lowest running time and highest test accuracy. 
However, the ADAM optimizer shows significantly higher running time and lower 
test accuracy using the Softmax and ReLU activation functions compared to the tanh, 
sigmoid and exponential activation functions. 

2. The RMSprop produces the best performance using the LSTM architecture Model-1 
with the sigmoid activation function and the learning rate of 0.01. However, RMSprop 
shows poor performance in terms of high running time and low accuracy value for 
each configuration using the Softmax activation function. 

Table 2 (continue)
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3. The SGD performs well in most combinations of activation functions and learning 
rates, wherein the lowest running time and highest test accuracy achieved using the 
sigmoid and ReLU activation functions. However, the SGD exhibits higher running 
time and lower test accuracy using the Softmax activation functions compared to the 
tanh and exponential activation functions. 

4. The AdaGrad performs well using the sigmoid, tanh and exponential activation 
functions. However, the AdaGrad shows the worst performance using the Softmax 
activation function followed by the ReLU activation function with the highest running 
time and lowest test accuracy. 

5. In general, the AdaDelta performs well using the sigmoid, ReLU and tanh activation 
functions in each configuration. The AdaDelta performs poorly, with the highest running 
time and lowest test accuracy using the Softmax activation function. 

6. NADAM has quite poor performance compared to other optimizer models for each 
configuration. 

7. The AdaMax performs well using the sigmoid and ReLU activation functions with a 
learning rate of 0.01 and 0.001, exhibiting the lowest running time and highest test 
accuracy. However, AdaMax shows higher running time and lower test accuracy for 
each configuration using the Softmax activation function compared to others.

In sum, the two best optimizers in terms of less training time and high accuracy are 
AdaGrad and SGD optimizers. Both AdaGrad and SGD optimizers perform well across a 
wide range of activation functions, Precisely, both optimizers achieve high accuracy and 
low running time across a wide range of models and optimizers, particularly effective 
with exponential and sigmoid.  While SGD is an easy and widely used method, AdaGrad 
offers more adaptive and efficient updates, making it particularly suitable for sparse data 
and tasks where the learning rate needs to be adjusted dynamically (Alzubaidi et al., 2021; 
Duchi et al., 2011). Where its application is suitable for the case in this study which has 
large amounts of data or high-dimensional data. AdaGrad and SGD perform better than 
others due to their enhanced efficiency and robustness against noisy data. Additionally, they 
dynamically adjust the learning rate for each model parameter, which helps to avoid the 
issue of vanishing gradients. This combination of efficient updates and adaptive learning 
rates enables these optimizers to effectively optimize DL models (Solanke & Patnaik, 2020).

Moreover, the two best activation functions are sigmoid and exponential. The choice of 
sigmoid or exponential activation function significantly impacts the training time of neural 
network models. Both sigmoid and exponential activation functions provide a continuous 
output range, which facilitates efficient updates by the optimizers (Yi et al., 2020). This is 
particularly important for SGD and AdaGrad, which rely on the gradient of the loss function 
calculated for a single training example or a small batch of examples. The continuous output 
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range of sigmoid and exponential activation functions also helps in reducing the impact 
of noisy data on the model's performance (Yi et al., 2020), which is crucial for optimizers 
like SGD and AdaGrad. Additionally, the continuous output range helps in adapting the 
learning rate for each model parameter, which is particularly important for AdaGrad.

Both sigmoid and exponential activation functions consistently perform well across 
different optimizers and activation functions, providing a continuous output range that 
facilitates efficient updates and robustness to noisy data. In contrast, activation functions 
like Softmax and ReLU may result in poorer performance due to their discrete output 
ranges. The interaction between optimizers and activation functions is crucial, and selecting 
the right combination of optimizer and activation function is essential for a specific task. 
Overall, the choice of sigmoid or exponential activation function plays a significant role 
in the performance of NN models, and it is crucial to experiment with different optimizers 
and activation functions to find the best combination for a specific task and dataset (Zou et 
al., 2019). In summary, the sigmoid and exponential activation functions are particularly 
effective with AdaGrad and SGD due to their continuous output range, non-linearity, 
robustness to noise, efficient updates, learning rate adaptation, robustness to local minima, 
performance across activation functions, and theoretical analysis. These characteristics 
make them well-suited for DL models and ensure that they can learn and represent complex 
patterns in the data, effectively (Mehmood et al., 2023). 

Meanwhile, the Softmax activation function has very poor performance due to not 
providing optimal performance across different models and optimizers. This is because 
the special properties of the Softmax function, which are non-sparsity and potential 
vanishing gradients hinder the optimization process, hence generate the overfitting problem. 
Consequently, the Softmax function in the LSTM architecture does not provide a clear 
separation between classes, leading to poor generalization performance. 

In addition to that, the Softmax activation function consistently performs poorly 
across different models due to several reasons. Firstly, the Softmax activation function 
produces output values between 0 and 1, leading to a loss of information and a decrease 
in the model's ability to learn complex patterns in the data. Additionally, the Softmax 
activation function is not as non-linear as other activation functions like sigmoid, tanh, and 
exponential, which can lead to a loss of information and a decrease in the model's ability to 
learn complex patterns in the data. The gradient calculation for Softmax can also be more 
complex and sensitive to the input values, leading to a loss of information and a decrease 
in the model's ability to learn complex patterns in the data (Shen et al., 2023; Szandała , 
2020). Furthermore, the optimization algorithms used in the experiments, such as ADAM, 
RMSprop, SGD, and AdaGrad, may not be well-suited for the Softmax activation function, 
leading to poor performance. 

The results for the accuracy of the different optimization algorithms used in this study 
are simply laid out from Figures 5 to 11, each giving insight into how well the models 
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performed with the same experimental setup. Starting with Figure 5, it shows how the 
ADAM optimizer performed, giving a baseline to compare against. Figure 6 goes on with 
RMSProp results, and Figure 7 presents the accuracy obtained using Stochastic Gradient 
Descent (SGD). Figure 8 then presents how AdaGrad fared, and Figure 9 goes on with 
results from AdaDelta. Figure 10 presents NADAM's performance, which is essentially 
an enhanced version of ADAM with Nesterov momentum. Lastly, Figure 11 presents 
the accuracy results for AdaMax, yet another infinity norm-based variant of ADAM. 
Collectively, these figures facilitate the comparison and visualization of the strengths of 
each optimizer in a consistent way. The comparison of accuracy results for each 
model or optimization algorithm using the experiment's current setups is shown 
graphically in the following.

Figure 5. Accuracy result (ADAM)

Figure 6. Accuracy result (RMSProp)
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Based on the analysis of the results of the studies and experiments that have been 
presented, some things that can be highlights are the importance of choosing the right 
optimizer model and hyperparameters for a specific problem. It also emphasizes the need for 
further research to better understand the interactions between these factors and their impact 
on model performance. Identify potential future directions for research in this area, such as 
exploring new optimization algorithms or activation functions, or integrating optimization 
algorithms with other DL techniques. Furthermore, the performance of the optimization 
algorithms and activation functions can be compared possibly using other methods.

Figure 7. Accuracy result (SGD)

Figure 8. Accuracy result (AdaGrad)
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Figure 9. Accuracy result (AdaDelta)

Figure10. Accuracy result (NADAM)

Figure 11. Accuracy result (AdaMax)
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CONCLUSION

This study aims to compare the performance of seven widely used GD optimization 
algorithms on RNN architecture using body motion datasets from the UCI ML repository. 
The optimization techniques compared are ADAM, RMSprop, SGD, AdaGrad, AdaDelta, 
NADAM, and AdaMax.  Precisely, the study is done across different combinations of 
optimizer models, LSTM architectures, activation functions, and learning rates. The results 
show that the AdaGrad model with both exponential and sigmoid activation functions and 
a learning rate of 0.001 has the best performance, with a training time of 17.1 minutes and 
a test accuracy of 78.31%, respectively. 

Moreover, the study also highlights the importance of selecting the optimal optimization 
algorithm for RNN training given specific properties of the training data. The findings 
suggest that the exponential activation function consistently performs well across different 
models and optimizers in most cases, whereas the Softmax activation function consistently 
performs poorly in all cases. Finally, this study also contributes to the understanding of 
how different optimizers handle the challenge of determining the best and most suitable 
training parameters utilizing accuracy and training duration as performance metrics.  The 
results provide valuable insights for researchers and practitioners in the field of DL and 
optimization.
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