
Journal homepage: http://www.pertanika.upm.edu.my/

SCIENCE & TECHNOLOGY

Article history:
Received: 19 November 2024
Accepted: 08 April 2025
Published: 04 July 2025

ARTICLE INFO

E-mail addresses:
zulfikarsembiring@studentmail.unimap.edu.my (Zulfikar Sembiring)
khairulnajmy@unimap.edu.my (Khairul Najmy Abdul Rani)
amizaamir@unimap.edu.my (Amiza Amir)
*Corresponding author

DOI: https://doi.org/10.47836/pjst.33.4.13

PREPRINT

e-ISSN: 2231-8526 © Universiti Putra Malaysia Press

A Comparative Study of Gradient Descent Methods in Deep
Learning Using Body Motion Dataset

Zulfikar Sembiring1,2*, Khairul Najmy Abdul Rani2,3 and Amiza Amir2

1Faculty of Engineering, Universitas Medan Area,20223 Medan, North Sumatera, Indonesia
2Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
3Centre of Excellence, Advanced Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis,
Malaysia

ABSTRACT
In this study, a Recurrent Neural Network (RNN) architecture model is used to analyse and compare
the seven most widely used first-order stochastic gradient-based optimization algorithms. Adaptive
Moment Estimation (ADAM), Root Mean Square Propagation (RMSprop), Stochastic Gradient
Descent (SGD), Adaptive Gradient (AdaGrad), Adaptive Delta (AdaDelta), Nesterov-accelerated
Adaptive Moment Estimation (NADAM), and Maximum Adaptive Moment Estimation (AdaMax)
are the optimization techniques that have been studied. The study used the body motion datasets
from the University of California-Irvine (UCI) Machine Learning (ML) datasets. This experiment
demonstrates the capabilities of various combinations of optimizer models, long short-term memory
(LSTM) architecture, activation functions, and learning rate. The main aim is to understand how
good each optimizer performs in test accuracy and feasible training time behaviour over various
learning rates and activation functions. The outcomes vary by setting, with some achieving higher
accuracy and shorter training sessions than others. The AdaGrad model, which uses exponential and
sigmoid activation functions with a learning rate of 0.001, has a training time of 17.1 minutes and
a test accuracy of 78.31%, making it the top-performing configuration. The exponential function
is an activation function that consistently outperforms other models and optimization algorithms.

It consistently delivers high accuracy and
minimal running time across numerous models
and optimizers, while the Softmax activation
function continuously underperforms.

Keywords: Accuracy, activation function, body
motion datasets, gradient descent (GD), learning rate,
long short-term memory (LSTM), Recurrent Neural
Network (RNN), running time

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

INTRODUCTION

Selecting the optimal optimization algorithm is one of the effective approaches to enhance
the learning process in deep learning (DL) algorithm. This work focuses on the application
of optimization methods based on the gradient descent (GD) approach to optimize the
DL architecture. DL relies heavily on optimization since the model optimizer continually
updates and calculates the parameters that affect model training and output. The purpose is
to follow the steepest descent direction, which is provided by the negative gradient, in order
to approximate or reach the optimal value and optimize the objective function (Mehmood
et al., 2023), DL optimization problems are complicated and call for more decomposition.
Three stages can be identified in the growth of optimization. The first stage is to get the
algorithm start running and have it arrived at a logical conclusion, like a stationary point.
Making the algorithm converge as rapidly as possible is the second stage. Making sure
the algorithm converges to a result with a low objective value, like a global minimum, is
the third stage (Sun, 2019). It is important to remember that getting good test accuracy
requires a further step that is outside the purview of optimization. The three categories
of convergence, convergence speed, and global quality as in Figure 1 are used to group
optimization problems.

Machine learning (ML) is a subset of artificial intelligence dedicated to creating
algorithms that allow computers to learn from data and make predictions or judgments
autonomously, without explicit programming (Ethem, 2020). The GD is widely employed
in ML and other mathematical applications to optimize a cost function. The cost function
calculates the discrepancy between a model projected and actual output. The objective of
GD is to minimize the cost function by modifying the model's parameters, such as weights

Figure 1. Optimization issues (Sun, 2019)

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

and biases (Chandra et al., 2022). The concept of GD is based on the idea of finding the
steepest descent direction of the cost function and moving the parameters in that direction
to reach a minimum value of the cost function (Seeli & Thanammal, 2024). This process
involves computing the gradient of the cost function with respect to the parameters and
taking a step in the opposite direction of the gradient by repeating this process iteratively,
GD can converge to a minimum of the cost function (Haji & Abdulazeez, 2021).

Comparing different GD optimizers is crucial in DL because it allows for the selection
of the most effective and efficient optimization algorithm for a specific problem. Each
optimizer has its strengths and weaknesses, and understanding these differences can
significantly impact the performance of the model. For instance, while Batch GD is simple
and easy to implement, it can be slow and computationally expensive for large datasets.
SGD, on the other hand, is faster but can be noisy and may not converge well (Schaul et al.,
2013). Adaptive optimizers like ADAM and its variants, however, can adapt to the changing
nature of the optimization problem, making them more robust and effective (Kingma & Ba,
2015). By comparing these optimizers, researchers and practitioners can identify the best
approach for their specific problem, ensuring optimal performance and faster convergence.
This comparison is particularly important in modern DL applications, where large datasets
and complex models require efficient and effective optimization techniques.

Neural network (NN) is commonly employed to tackle non-convex problems, but
choosing an appropriate optimization method can be difficult to locate the global optimum in
these networks. This difficulty arises from the need to estimate a vast quantity of parameters
within a high-dimensional search space. An ineffective optimization strategy may lead the
network to remain trapped in local minimum while training, preventing any improvement
(Dogo et al., 2018). Moreover, because of ADAM's stability and performance in a wide
range of case scenarios, several NN researchers instinctively favour it in all circumstances.
Consequently, it is essential to conduct a study to investigate how optimizers operate in
relation to the model and dataset utilized to gain a deeper understand of their behaviours.

As a result, the contribution of this paper is an experimental comparison of the
performance of seven well-known and widely used GD optimization algorithms on a RNN
model. RNN is One type of neural network that can process sequential inputs, such as
time series and natural language. The RNN model uses the body motion dataset from the
UCI ML datasets with several learning rates, and activation functions. Using convergence
speed, accuracy, and loss function as performance metrics, this comparison shows how
well and consistently each optimizer handled the problem of locating the proper and ideal
minima throughout training.

BACKGROUND OF STUDY AND RELATED WORK

GD is a first-order iterative optimization technique that moves in the opposite direction as
the gradient to find a local minimum of a loss function (Chandra et al., 2022). On the other

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

hand, gradient ascent—moving in the direction of the gradient—leads to a local maximum
(Hallén, 2017). By modifying weights during backpropagation to reduce loss and address
the curse of dimensionality, GD plays a critical role in DL optimization (Goodfellow et
al., 2016).

SGD, AdaGrad, AdaDelta, RMSprop, ADAM, AdaMax, and NADAM are prominent
optimization algorithms utilized for training machine learning models, including neural
networks, with SGD adjusting parameters according to gradients derived from individual
or small batches of instances (Schaul et al., 2013). AdaGrad is an algorithm that adapts
the learning rate of each model parameter based on historical gradient information (Duchi
et al., 2011; Solanke & Patnaik, 2020). AdaDelta is a variant of AdaGrad that uses a
moving window of gradient updates instead of accumulating all past gradients (Zeiler,
2012). RMSprop is a variant of the GD algorithm that uses a decaying average of partial
gradients to adapt the step size for each parameter (Hinton & Tieleman, 2012; Zou et
al., 2019). ADAM is an adaptive learning rate optimization algorithm that combines the
advantages of both AdaGrad and RMSprop (Kingma & Ba, 2015; Yi et al., 2020). AdaMax
is a variant of ADAM that is based on the infinity norm (Fatima, 2020). NADAM is a
variant of ADAM with Nesterov momentum (Adem & Kiliçarslan, 2019; Sutskever et al.,
2013). These algorithms are utilized in DL packages like Caffe, Lasagne, TensorFlow, and
Keras. To obtain improved generality, researchers continue to create optimizers, as seen
in (Lv et al., 2017).

RNN utilize memory to integrate previous inputs, hence modifying the present input
and result (Karna et al., 2024). Both unrollable finite impulse networks and temporally
dynamic infinite impulse networks (Sherstinsky, 2020) are examples of RNN, which are
characterized by infinite impulse response (Miljanovic, 2012). Like Gated Recurrent Units
(GRUs), commonly referred to as feedback neural networks (FNN), these networks may
have memory or gated states (Hochreiter & Schmidhuber, 1997).

Using different numbers of iterations and particular test function values on a
stacked denoising autoencoder (SDA) architecture, based on convergence time, number
fluctuations, and parameter update rate, authors in (Yazan & Talu, 2017) examined a
comparison of optimization techniques based on SGD, specifically ADAM, AdaGrad,
AdaDelta, RMSprop, SGD, and SGD with momentum. According to their experimental
results in terms of rapid convergence, AdaDelta outperformed the other optimizers. The
datasets they used for their tests are unknown. The author of (Papamakarios, 2014) used
the logistic and Softmax regression on the synthetic and Modified National Institute of
Standards and Technology (MNIST) handwritten digits datasets, respectively, to compare
the performance of four GD-based variants on the limited convex objective fitting problem:
GD, stochastic GD, semi-SGD, and stochastic average descent. In the authors' two trials,
SGD outperformed SG in general, but the two hybrid forms achieved superior accuracy in
more reasonable amounts of time. In a similar vein (Hallén, 2017) conducted a performance

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

comparison between GD and SGD using the MNIST ML dataset for linear regression
and multinomial logistic regression, using accuracy, training, and convergence time as
performance variables. In a recent study (Ruder, 2016), gave a simple overview of how
modern GD optimization techniques behave.

While pointing out difficulties in optimizing GD (Shalev-Shwartz et al., 2017), experts
advise flexible learning rates for complex neural network training. These difficulties include
slow training, vanishing gradients as a result of insufficient conditioning, low signal-to-noise
ratio (SNR), and limited gradient informativeness. However, a comprehensive evaluation
of the impact of these popular optimization algorithms on an RNN architecture using image
classification datasets appears to be lacking in existing studies.

Based on the related works, several types of studies can be conducted to further explore
the optimization of neural networks. These studies can involve conducting a comprehensive
comparison of various optimization algorithms on RNN using other datasets, developing
a theoretical framework for selecting the most suitable optimizer for training RNN, and
conducting experiments using various datasets and NN architectures to evaluate the
performance of different optimizers. Additionally, studies can focus on investigating
and developing new optimization techniques specifically designed for DL applications,
analyzing the scalability and efficiency of different optimizers in large-scale neural network
training, and optimizing NN with specific architectures. Furthermore, studies can explore
the use of hybrid optimizers and ensemble methods to combine the strengths of different
optimizers, investigate the performance of optimizers on non-convex problems, and study
the performance of optimizers on sparse and large-scale datasets. These studies can help
in understanding the performance of different optimizers, developing new optimization
techniques, and improving the efficiency and accuracy of neural network training.

METHODOLOGY AND EXPERIMENTAL SETUP

This study used the LSTM networks, a version of RNN architecture specifically engineered
to proficiently learn and retain long-range dependencies in sequential input (Hochreiter &
Schmidhuber, 1997). On the developed model, the performance of seven well-known SGD
optimization techniques was also demonstrated. This research utilized the Mobile Health
(MHEALTH) dataset from the UCI ML repository, which is a body motion dataset intended
to evaluate methodologies for human behavior analysis through multimodal body sensing
(Banos et al., 2014) . The optimizers model examined were SGD, RMSProp, ADAM,
AdaGrad, AdaDelta, AdaMax, and NADAM. For each trial, identical hyperparameter
settings were applied. The body motion dataset was used to train the complete network
across 100 epochs.

The MHEALTH dataset was utilised to train the LSTM architecture. The selected LSTM
model underwent rigorous evaluation and analysis on the MHEALTH body motion dataset
to determine its effectiveness in extracting meaningful information from the body motion.

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Various metrics, including training time and test accuracy, were assessed to quantify the
LSTM architecture performance. The impact by experimenting with various combinations
of learning rates, activation functions, and LSTM architectures was investigated. This
analysis involved training the LSTM model with different optimizers. Values on subsets
of the MHEALTH body motion dataset and observing the corresponding training and test
accuracy changes. Training dataset is presented to the model during training. Setting all the
configurations with aims to evaluate and compare the performance of seven widely used
first-order stochastic gradient-based optimization algorithms within a RNN framework.
specifically focuses on how these optimizers — ADAM, RMSprop, SGD, AdaGrad
AdaDelta, NADAM, and AdaMax—perform in terms of test accuracy and training time
when applied to a body motion dataset. The objectives to be achieved are to identify which
optimizer yields the best results by experimenting with various combinations of learning
rates, activation functions, and LSTM architectures.

Data Collection - UCI Body Motion Dataset

In this study, the dataset used to measure and compare the performance of optimization
algorithms was the motion dataset. The MHEALTH dataset was devised to benchmark
techniques dealing with human behaviour analysis based on multimodal body sensing.
This dataset consisted of 23 features (columns). The number of samples determined was
100,000 and there was no missing data in the dataset. The data collected for each subject
was stored in a different log file. There were 10 people doing 12 common daily activities,
such as standing still, sitting, and relaxing, lying down, walking, climbing stairs, waist
bends forward, frontal elevation of arms, knees bending, cycling, jogging, running, and
jump front/back, and each activity was recorded for 1 minute. For one object, it took 12
minutes to collect the data for 12 activities. Each file contained the samples (by rows)
recorded for all sensors (by columns).

RNN Model Setup

Three LSTM network architecture models were created for this experimental investigation
to observe the variations in the weight values produced by each architecture, which were
1) one LSTM as default, 2) two LSTMs, and 3) added dropout model between the two
LSTMs. The LSTM architecture models in this study can be seen from Figures 2 till 4.

The network architecture in this study has 23 input features (m1, m2, m3, ... , m23) with
input representation: : 𝑋𝑋𝑡𝑡 ∈ ℝ23 at each time step, t. The following is a mathematical model
that represents the LSTM network architecture Model-1 (Figure 2).

LSTM layer (hidden layer), the LSTM unit receives the input and the previous hidden
state (t-1) and cell state (t-1). The mathematical model or equation for the main LSTM
computation is using the equation (Hochreiter & Schmidhuber, 1997):

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 [1] 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 [2]
 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 [3]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 [4]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)
 [5]

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡) [6]

The LSTM accepts the current input vector 𝑋𝑋𝑡𝑡 the previous hidden state 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

, and
the previous cell state

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

. The forget gate, provided by 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

determines what parts of the previous memory e

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 must be saved. The input gate 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 and candidate cell state

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

 work
together to decide what new information must be added to the memory. The new state of
the cell is computed as

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

, where element-wise multiplication is
represented by

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)

. The output gate

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)
 then decides how much of

the memory is to be given as output to the next time step. Finally, the new hidden state is
calculated as

 𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2)

�̃�𝐶t = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) (3)

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⨀ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⨀ �̃�𝐶t (4)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜[ℎt-1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⨀ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡) , and this will be both the output of the present LSTM
unit and also an input to the next step of the sequence. In these equations, σ is the sigmoid
activation function (which outputs between 0 and 1), and tanh is the hyperbolic tangent
function (which outputs between -1 and 1). The weight matrices W_f, W_i, W_c, W_o

Figure 2. Model-1 (One hidden layer with one long short-term memory layer [LSTM])

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

are learned weight parameters for every gate, and b_f, b_i, b_c, b_o are corresponding
bias vector.

Fully connected layer receives t from the LSTM layer and processes it with weights
and biases.

 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎt + 𝑏𝑏𝑓𝑓𝑐𝑐) [7]

where, Wfc is referred to weight of fully connected layer and bfc is bias.

Dense layer (output) takes the output of the fully connected layer and maps it to the
output using the last weight and bias.

𝑦𝑦 = (𝑊𝑊𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 𝐻𝐻 + 𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑) [8]

where, Wdense is referred to weight of output layer and bdense is bias.

A representation of the second network architecture that was utilized in the research
is shown in Model -2, which can be found in this following Figure 3. Model -2, which can be found in this following Figure 3.

Figure 3. Model-2 (Two hidden
Figure 3. Model-2 (Two hidden layers with two long short-term memory [LSTM] layers)

The LSTM architecture models, Model-2 and Model-3 (Figures 3 and 4), are essentially
the same as the LSTM architecture model, Model-1, for computations and mathematical
models; however, they have an additional hidden layer. The following is a mathematical
model that represents the LSTM network architecture Model-2 (Chen et al., 2022;
Hochreiter & Schmidhuber, 1997; Van Houdt et al., 2020).

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 [9]
LSTM Layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 [10]

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 [11]

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜) [12]

Model-2 enhances the standard LSTM by adding an extra hidden layer, allowing it to learn
more complex patterns in sequential data. In the first LSTM layer, the hidden state LSTM Layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 is
computed from the input LSTM Layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, previous hidden state LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, input weights LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, recurrent weights
LSTM Layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, and bias LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, using the sigmoid activation σ: LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

. This
hidden state is transformed by a fully connected layer into a new feature

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 using ReLU
activation:

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 where

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 and

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 are the weights and bias of
the dense layer. The second LSTM layer uses this

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 along with its previous hidden state
ℎ𝑡𝑡

(2) , weights

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

,

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, and bias

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 to compute:

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

. Finally,
the model output is calculated as: Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡

(2) + 𝑏𝑏𝑜𝑜) with

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 and

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

representing the
output layer’s weights and bias. This design enables the model to learn both short- and
long-term dependencies effectively. Henceforth, the network architecture used in this study
is LSTM model-3, which can be seen in the following Figure 4.

Figure 4 is the LSTM architecture Model-3, which is essentially identical to the previous
one, with the exception that a dropout layer is used in place of the middle layer to avoid

Figure 4. Model-3 (two hidden layers with two long short-term memory [LSTM] layers and one dropout layer)

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

overfitting. The following mathematical model represents the LSTM network architecture
Model-3 (Chen et al., 2022; Hochreiter & Schmidhuber, 1997; Van Houdt et al., 2020).

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

 [13]LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

 [14]
LSTM layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

 [15]

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜) [16]

where, the hidden state LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

using the current input LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, the previous hidden state
LSTM Layer 1: ℎ𝑡𝑡

(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1
(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, weight matrices LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 and LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, and a bias term LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

. Then, a dropout layer is applied to

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 producing a new intermediate state

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

by randomly dropping units based on the

dropout probability

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16

. This result is fed into the second LSTM layer, which produces

LSTM layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 (𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1) (13)

Dropout layer: ℎ𝑡𝑡
(𝑑𝑑) = Dropout (ℎ𝑡𝑡

(1),𝑝𝑝) ; 𝑝𝑝 is dropout probability (14)

LSTM layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2ℎ𝑡𝑡

(𝑑𝑑) + 𝑈𝑈2ℎ𝑡𝑡−1
(2) + 𝑏𝑏2) (15)

Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (16 using

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

,

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

, and

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

. The final output Dense layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜) is calculated through a dense layer with weights

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

 and bias

LSTM Layer 1: ℎ𝑡𝑡
(1) = 𝜎𝜎 �𝑊𝑊1𝑋𝑋𝑡𝑡 + 𝑈𝑈1ℎ𝑡𝑡−1

(1) + 𝑏𝑏1� (9)

Fully Connected Layer: 𝐻𝐻 = ReLU (𝑊𝑊𝑓𝑓𝑐𝑐ℎ𝑡𝑡
(1)+ 𝑏𝑏𝑓𝑓𝑐𝑐) (10)

LSTM Layer 2: ℎ𝑡𝑡
(2) = 𝜎𝜎 (𝑊𝑊2𝐻𝐻 + 𝑈𝑈2ℎ𝑡𝑡−1

(2) + 𝑏𝑏2) (11)

Dense Layer (Output): 𝑦𝑦 = (𝑊𝑊𝑜𝑜ℎ𝑡𝑡
(2) + 𝑏𝑏𝑜𝑜 (12)

.

Optimization Techniques

Experiments are conducted by comparing seven different optimization methods, namely
SGD, ADAM, RMSprop, AdaGrad, AdaDelta, NADAM, and AdaMax. Each GD based
optimization method has a unique approach in updating the model parameters. The main
equations for the methods used in this study are as follows:

The SGD method is a basic form of gradient-based optimization. The mathematical
equation for all the GD method is using this following equations (Ruder, 2016):

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡) [17]

where, the model parameters at a given iteration (denoted as 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)) are updated to 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡)
by moving in the opposite direction of the gradient of the loss function. This update is
controlled by a learning rate (η), a small positive value that determines the size of each step
towards minimizing the loss. The gradient, represented as 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂∇𝐿𝐿 (𝜃𝜃𝑡𝑡) , indicates how much
the loss changes with respect to the current parameters, guiding the optimization process.
AdaGrad adjusts the learning rate for each parameter based on the previous gradient:

𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) [18]

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 [19]

𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡−1 + 𝑔𝑔𝑡𝑡2 [20]

The AdaGrad optimizer improves the standard gradient descent method by adapting the
learning rate for each model parameter based on the historical accumulation of gradients.
At each training step, it calculates the gradient of the loss function with respect to
the current parameters, noted as 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) . Instead of applying a fixed learning rate,
AdaGrad adjusts it by dividing the global learning rate η by the square root of the sum of
all past squared gradients 𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡−1 + 𝑔𝑔𝑡𝑡2 , and a small constant ε to maintain numerical stability. This
results in the update rule 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −

𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 , where 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −

𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 indicates element-

wise multiplication. The cumulative term 𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡−1 + 𝑔𝑔𝑡𝑡2 is updated at each step as 𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡−1 + 𝑔𝑔𝑡𝑡2 .
This approach naturally decreases the learning rate for parameters that frequently receive
large updates, which helps improve learning efficiency and model performance, especially
in scenarios involving sparse or high-dimensional data. RMSProp overcomes AdaGrad's
weakness by using exponential averaging of squared gradients:

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 [21]
𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 [22]

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 [23]

where, 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) is the gradient of the loss function with respect to the model parameters at
iteration and 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) represents the direction and rate of increase of the loss function at
parameters. Equation [22] defines the exponential moving average of the squared gradients,
where

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 represents the smoothed estimate of the squared gradient at iteration t.
The term

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 is a decay factor, usually set between 0.9 and 0.99, which controls how much
influence the past squared gradients

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 have on the current estimate. Meanwhile,

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 is the
element- wise square of the current gradient. Equation [23] update the model parameters
in RMSProp, where

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 and

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 are the current and updated parameters, respectively. η is

the learning rate, 𝜖𝜖 is a small constant to avoid division by zero, and 𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 denotes element-

wise multiplication. ADAM combines momentum and RMSProp for adaptive learning
rate adjustment (Kingma & Ba, 2015; Ruder, 2016):

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 [24]
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 [25]

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 [26]

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡 [27]

In the ADAM optimization algorithm, parameter updates are computed using both the
first and second moment estimates of the gradients. Equation [24] defines the first moment
estimate, where 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) is the current gradient and β1 is the exponential decay rate for the
gradient moving average. Equation [25] computes the second moment estimate, where β2
is the decay rate for the squared gradients. Since both 𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 and

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 are initialized at zero, bias-
corrected estimates are used as shown in Equation [26]. The model parameters are updated
using Equation [27], where

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 and

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 are the current and updated parameters, η is the

learning rate, and 𝜖𝜖 is a small constant added for numerical stability. This combination of
momentum and adaptive learning rate adjustment makes Adam particularly effective for
deep learning tasks. AdaDelta overcomes gradient accumulation in AdaGrad by using a
moving average of the gradients (Ruder, 2016):

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (28)

∆𝜃𝜃𝑡𝑡 = −
�𝐸𝐸�∆𝜃𝜃𝑡𝑡−1

2 �

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
+ 𝜖𝜖 (29)

𝐸𝐸[∆𝜃𝜃𝑡𝑡2] = 𝜌𝜌𝐸𝐸[∆𝜃𝜃𝑡𝑡−1
2] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2

 [28]
𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1

2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (28)

∆𝜃𝜃𝑡𝑡 = −
�𝐸𝐸�∆𝜃𝜃𝑡𝑡−1

2 �

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
+ 𝜖𝜖 (29)

𝐸𝐸[∆𝜃𝜃𝑡𝑡2] = 𝜌𝜌𝐸𝐸[∆𝜃𝜃𝑡𝑡−1
2] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2

 [29]

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (28)

∆𝜃𝜃𝑡𝑡 = −
�𝐸𝐸�∆𝜃𝜃𝑡𝑡−1

2 �

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
+ 𝜖𝜖 (29)

𝐸𝐸[∆𝜃𝜃𝑡𝑡2] = 𝜌𝜌𝐸𝐸[∆𝜃𝜃𝑡𝑡−1
2] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2 [30]

The algorithm maintains a decaying average of past squared gradients as shown in
Equation [28], where 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) is the gradient at the current time step, and

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡

 is a decay constant
that controls how much weight is given to past values. Parameter updates are calculated
using Equation [29], where

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (28)

∆𝜃𝜃𝑡𝑡 = −
�𝐸𝐸�∆𝜃𝜃𝑡𝑡−1

2 �

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
+ 𝜖𝜖 (29)

𝐸𝐸[∆𝜃𝜃𝑡𝑡2] = 𝜌𝜌𝐸𝐸[∆𝜃𝜃𝑡𝑡−1
2] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2 represents the update applied to the model parameters.

This formulation scales the raw gradient based on the ratio between the root mean square of
previous updates and the current average of squared gradients, with 𝜖𝜖 (a small constanta)
included to prevent division by zero and enhance numerical stability. Updates the moving
average of squared parameter updates using Equation [30], where

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸[𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (28)

∆𝜃𝜃𝑡𝑡 = −
�𝐸𝐸�∆𝜃𝜃𝑡𝑡−1

2 �

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
+ 𝜖𝜖 (29)

𝐸𝐸[∆𝜃𝜃𝑡𝑡2] = 𝜌𝜌𝐸𝐸[∆𝜃𝜃𝑡𝑡−1
2] + (1 − 𝜌𝜌)(∆ 𝜃𝜃𝑡𝑡) 2 is the element-

wise square of the current update. This recursive structure ensures consistent and adaptive
parameter updates over time.

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Adamax is an ADAM variant based on norm infinity (ℓ ⋈), the mathematical equation
is using this following equations (Ruder, 2016) :

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (31)

𝑢𝑢𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑀𝑀 (𝛽𝛽2𝑢𝑢𝑡𝑡−1 , |𝑔𝑔𝑡𝑡2|) (32)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑢𝑢𝑡𝑡

 𝑚𝑚𝑡𝑡

 [31]
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (31)

𝑢𝑢𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑀𝑀 (𝛽𝛽2𝑢𝑢𝑡𝑡−1 , |𝑔𝑔𝑡𝑡2|) (32)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑢𝑢𝑡𝑡

 𝑚𝑚𝑡𝑡

 [32]

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (31)

𝑢𝑢𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑀𝑀 (𝛽𝛽2𝑢𝑢𝑡𝑡−1 , |𝑔𝑔𝑡𝑡2|) (32)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑢𝑢𝑡𝑡

 𝑚𝑚𝑡𝑡 [33]

The first moment estimate is computed using an exponentially weighted moving
average of the gradients, as shown in Equation [31], where 𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

 is the exponentially weighted
average of gradients, 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) is the current gradient, and β₁ is the decay rate. Adamax uses the
infinity norm, as defined in Equation [32], where 𝑢𝑢𝑡𝑡 is the running maximum of the
scaled gradient magnitudes, β₂ is the decay rate for this term, and |𝑔𝑔𝑡𝑡 | is the element-wise
absolute gradient. The parameters are then updated using Equation [33], where

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 is the

parameter at step t, η is the learning rate, and the denominator normalizes the update using
the square root of the infinity norm. NADAM added Nesterov's momentum to ADAM's
(Ruder, 2016).

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (34)

𝑢𝑢𝑡𝑡 = 𝛽𝛽2𝑢𝑢𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (35)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + (1− 𝛽𝛽1
1−𝛽𝛽1

𝑡𝑡 𝑔𝑔𝑡𝑡 (36)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡�

 [34]
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (34)

𝑢𝑢𝑡𝑡 = 𝛽𝛽2𝑢𝑢𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (35)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + (1− 𝛽𝛽1
1−𝛽𝛽1

𝑡𝑡 𝑔𝑔𝑡𝑡 (36)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡�

 [35]

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (34)

𝑢𝑢𝑡𝑡 = 𝛽𝛽2𝑢𝑢𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (35)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + (1− 𝛽𝛽1
1−𝛽𝛽1

𝑡𝑡 𝑔𝑔𝑡𝑡 (36)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡�

 [36]

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (34)

𝑢𝑢𝑡𝑡 = 𝛽𝛽2𝑢𝑢𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (35)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + (1− 𝛽𝛽1
1−𝛽𝛽1

𝑡𝑡 𝑔𝑔𝑡𝑡 (36)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡� [37]

In the NADAM optimization algorithm

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 represent for the model parameters at

iteration t, and

𝑔𝑔𝑡𝑡 = ∇𝐿𝐿 (𝜃𝜃𝑡𝑡) (21)

𝐸𝐸[𝑔𝑔𝑡𝑡2] = 𝜌𝜌𝐸𝐸 [𝑔𝑔𝑡𝑡−1
2] + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 (22)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂

�𝐸𝐸�𝑔𝑔𝑡𝑡2�+𝜖𝜖
 ⨀ 𝑔𝑔𝑡𝑡 denote the update parameters.The gradient of the loss function at time

t is denoted by 𝑔𝑔𝑡𝑡 = ∇ 𝐿𝐿 (𝜃𝜃𝑡𝑡) . The algorithm keeps track of two moving averages: 𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (24)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (25)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + 𝑣𝑣𝑡𝑡� = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡 (26)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂
�𝑣𝑣𝑡𝑡+𝜖𝜖

 𝑚𝑚𝑡𝑡

, which is the
exponentially weighted average of past gradients (also known as the first moment), and
𝑢𝑢𝑡𝑡 , which is the exponentially weighted average of past squared gradients (the second
moment). These averages help smooth out the noise in the gradient updates. To improve
stability early in training, NADAM uses a bias- corrected version of the first moment, noted
as

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (34)

𝑢𝑢𝑡𝑡 = 𝛽𝛽2𝑢𝑢𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (35)

𝑚𝑚𝑡𝑡� = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1

𝑡𝑡 + (1− 𝛽𝛽1
1−𝛽𝛽1

𝑡𝑡 𝑔𝑔𝑡𝑡 (36)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑢𝑢𝑡𝑡� + 𝜖𝜖
 𝑚𝑚𝑡𝑡� , which also incorporates a lookahead gradient term inspired by Nesterov momentum.

The constants β₁ and β₂ control the decay rates of these moving averages and are usually
set close to 1. The learning rate, symbolized by η, determines how big each step should be
when updating the parameters, and 𝜖𝜖 is a small value added to the denominator to avoid
division by zero, ensuring numerical stability.

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Activation Functions

Five activation functions—Sigmoid, Softmax, ReLU, tanh, and Exponential—were
employed in this study to maximize the RNN model's performance. Particularly in deciding
how information is processed and transmitted in each neuron layer, each of these functions
has a distinct function and set of properties in the model training process. Sigmoid is perfect
for binary classification because it compresses outputs between 0 and 1. Nevertheless, it
slows down model updates due to the vanishing gradient issue. The function for all the
activation function variant is using this following equations (Szandała , 2020):

σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
 [38]

The sigmoid function σ (σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
) is the output of the activation function, mapping any real-

valued input σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
 to a value between 0 and 1. The input σ (𝑀𝑀) =

1
1 + 𝑑𝑑−𝑀𝑀

 is typically the weighted sum of
inputs to a neuron, given by σ (𝑀𝑀) =

1
1 + 𝑑𝑑−𝑀𝑀

 = w₁x₁ + w₂x₂ + ... + wnxn + b, where wᵢ is the weight of
the i-th input, xᵢ is the i-th input feature, and b is the bias term. The constant e is Euler’s
number, approximately 2.71828, and

σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀

 is the exponential function with exponent -σ (𝑀𝑀) =

1
1 + 𝑑𝑑−𝑀𝑀

 ,
which decreases rapidly as σ (𝑀𝑀) =

1
1 + 𝑑𝑑−𝑀𝑀

 increases.
Softmax transforms inputs into a probability distribution, generalizing sigmoid for

multi-class classification. Its downside is overfitting, as it might give excessive probabilities.
Softmax is defined as:

Softmax (𝑀𝑀𝑖𝑖) =
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 [39]

where, (σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
 ᵢ) is the output for the i-th class, representing the predicted probability that

the input belongs to class i. The term σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
 ᵢ refers to the logit or raw output score from the

model for the i-th class, (before the activation). The constant
Softmax (𝑀𝑀𝑖𝑖) =

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 denotes Euler’s number,

approximately equal to 2.71828. The expression
Softmax (𝑀𝑀𝑖𝑖) =

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 is the exponential of the logit xᵢ, which
scales the output positively. The denominator

Softmax (𝑀𝑀𝑖𝑖) =
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 is the sum of the exponentials of all

logits across all classes
Softmax (𝑀𝑀𝑖𝑖) =

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 used to normalizes the output so that they add up to 1.

By only activating positive values, the ReLU resolves the vanishing gradient problem
and accelerates convergence. It has to deal with the fading ReLU issue, though, where
neurons might stop working. This function is formulated as:

ReLU(𝑀𝑀) = � 𝑀𝑀, 𝑀𝑀 > 0
𝛼𝛼0, 𝑀𝑀 ≤ 0 [40]

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

where, ReLU(σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
) is the output of the activation function applied to the input x, which

typically represents the weighted sum of inputs to a neuron. The symbol x is the input
value, and α is a small positive constant (usually around 0.01) called the leakage coefficient,
which allows a small, non-zero gradient when x is negative. This helps avoid the “dying
ReLU” problem by ensuring that neurons can still update during training even when they
receive negative inputs.

Similar to sigmoid, tanh improves representation by having an output range of -1 to
1. The vanishing gradient still affects it, particularly at extreme values. This function is
defined as:

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
 [41]

where, σ (𝑀𝑀) =
1

1 + 𝑑𝑑−𝑀𝑀
 represents the input value, typically the weighted sum of inputs to a neuron.

The symbol
Softmax (𝑀𝑀𝑖𝑖) =

𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 stands for Euler’s number, approximately equal to 2.71828. The terms

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀

and
tanh(𝑀𝑀) =

𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
 are the exponential functions of x and -x, respectively. The numerator

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀

gives the difference of exponentials, while the denominator
tanh(𝑀𝑀) =

𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀

 ensures the output

remains bounded between -1 and 1.
Exponential learning speeds up learning by exponentially magnifying input values,

but it also runs the danger of inflating gradients, which can cause training instability.
Exponential defined as:

Exponential (𝑀𝑀) = 𝑑𝑑𝑀𝑀 [42]

where, x represents the input value, typically the weighted sum of inputs to a neuron.
The symbol

Softmax (𝑀𝑀𝑖𝑖) =
𝑑𝑑𝑀𝑀𝑖𝑖
∑ 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

 stands for Euler’s number (~2.71828) and the terms

tanh(𝑀𝑀) =
𝑑𝑑𝑀𝑀 − 𝑑𝑑−𝑀𝑀

𝑑𝑑𝑀𝑀 + 𝑑𝑑−𝑀𝑀
 grows rapidly with

positive x and approaches zero as x becomes negative.

Experimental Configuration

Experiments were conducted to compare several optimization methods discussed, such as
ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax. The RNN model
consisted of an input layer that was then forwarded to the LSTM architecture, and the last
layer was the output layer. Based on Tabel 1, the training data was processed for a batch
size of 32 sample records and 100 epochs. The training data was compiled with the learning
rate of 0.1, 0.01, and 0.001, respectively. The network structure is shown in Table 1.

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Table 1
Recurrent Neural Network structure specification

Description Value
Learning rate 0.1; 0.01; 0001
Number of epoch 100
Batch size 32
Number of training 80% : 80,000
Number of validation 20% : 20,000
Optimizer ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax
Activation function Sigmoid, Softmax, ReLU, tanh, and Exponential

Note. ADAM = Adaptive Moment Estimation; RMSProp = Root Mean Square Propagation; SGD = Stochastic
Gradient Descent; AdaGrad = Adaptive Gradient Algorithm; AdaDelta = Adaptive Delta; NADAM = Nesterov-
accelerated Adaptive Moment Estimation; AdaMax = Adaptive Moment Estimation with Infinity Norm

RESULTS AND DISCUSSION

The purpose of the experiment was to analyze each configuration of optimizers, which
included ADAM, RMSprop, SGD, AdaGrad, AdaDelta, NADAM, and AdaMax with three
LSTM network architecture models, five activation functions, and three learning rates (α),
respectively. The comparison results shown in Table 2 are the training process or training
time in minutes, abbreviated by "TT", and the test accuracy in percentages, abbreviated
by "TA", for every configuration.

This study systematically evaluated the performance of various optimization algorithms
using RNN architecture, specifically LSTM networks. The implementation was carried
out using the TensorFlow DL library and Python programming language. The experiments
were performed on a Dell personal computer equipped with an Intel Core i7 processor,
16 GB of RAM, and an NVIDIA GeForce GTX 1660 graphics card, ensuring a robust
computational setup. Performance evaluation was based on test accuracy and training
time, with results systematically compiled into tables summarizing the impact of different
optimizers and hyperparameter configurations such as learning rates (0.1, 0.01, and 0.001)
and five activation functions (Sigmoid, Softmax, ReLU, tanh, and Exponential). Each trial
maintained a consistent batch size of 32 samples, ensuring uniform data processing across
all experiments for comparability.

Table 2 indicates that testing accuracy is determined by the model evaluation outcomes
following training with the test dataset. The test accuracy value is calculated by splitting
the dataset into two sections: the training process (80%) and the testing process (20%).
The model is trained using training data with various parameters (optimizer, learning rate,
activation function) during the training process. Following training, the model is tested
using the test dataset (test set). By contrasting the actual label in the test dataset with the
model prediction, the degree of accuracy, also known as test accuracy, is determined.

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Table 2
Performance comparisons of studied optimization algorithms

Optimizer
model

LSTM
architecture

Activation
function

α = 0.1 α = 0.01 α = 0.001
TT

(min)
TA
(%)

TT
(min)

TA
(%)

TT
(min)

TA
(%)

ADAM

Model-1

Sigmoid 81.56 78.31 73.73 76.38 76.43 78.29

Softmax 17.96 1.83 78.33 1.83 80.18 1.83

ReLU 79.83 78.31 79.24 78.31 79.67 78.31

tanh 17.8 78.31 17.91 78.31 17.87 78.31

Exponential 17.84 78.31 17.89 78.31 17.95 78.31

Model-2

Sigmoid 32.04 78.31 31.8 78.31 31.66 78.31

Softmax 31.74 1.83 31.81 1.83 31.78 1.83

ReLU 31.97 78.31 32.47 78.31 34.4 78.31

tanh 34 78.31 34.28 78.31 34.14 78.31

Exponential 34.03 78.31 33.53 78.31 34.29 78.31

Model-3

Sigmoid 32.05 75.09 31.17 75.10 31.37 75.11

Softmax 31.53 1.83 31.66 1.83 31.51 1.83

ReLU 31.46 78.31 31.63 78.31 31.6 78.31

tanh 31.49 78.31 31.47 78.31 31.55 78.31

Exponential 31.6 78.31 31.55 78.31 31.56 78.31

RMSprop

Model-1

Sigmoid 17.81 78.31 17.72 78.31 18.03 78.31

Softmax 18.02 1.83 18.02 1.83 18.1 1.83

ReLU 18.01 78.31 18.01 78.31 17.89 78.31

tanh 17.9 78.31 17.99 78.31 17.99 78.31

Exponential 18 78.31 18 78.31 18.02 78.31

Model-2

Sigmoid 34.28 78.31 33.84 78.31 34.16 78.31

Softmax 34.03 1.83 33.91 1.83 33.16 1.83

ReLU 34.18 78.31 33.87 78.31 34.78 78.31

tanh 34.35 78.31 33.87 78.31 33.04 78.31

Exponential 33.05 78.31 33.11 78.31 33.08 78.31

Model-3

Sigmoid 31.01 78.31 30.97 75.07 30.9 75.06

Softmax 31.01 1.83 31.04 1.83 31.05 1.83

ReLU 31.05 78.31 31.11 78.31 31.21 78.31

tanh 31.09 78.31 31.39 78.31 31.07 78.31

Exponential 31.12 78.31 31.25 78.31 31.52 78.31

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Optimizer
model

LSTM
architecture

Activation
function

α = 0.1 α = 0.01 α = 0.001
TT

(min)
TA
(%)

TT
(min)

TA
(%)

TT
(min)

TA
(%)

SGD

Model-1

Sigmoid 18 78.31 18.01 78.31 18.04 78.31

Softmax 18.01 1.83 18.01 1.83 18.01 1.83

ReLU 18 78.31 18 78.31 18 78.31

tanh 18.01 78.31 18.01 78.31 18.01 78.31

Exponential 18.01 74.76 18.01 74.85 18.01 74.87

Model-2

Sigmoid 34.16 78.30 34.12 78.30 33.83 78.30

Softmax 33.35 1.83 33.03 1.83 33.03 1.83

ReLU 33.02 78.31 32.74 78.31 30.10 78.31

tanh 30.2 78.31 30.12 78.31 30.07 78.31

Exponential 30.25 78.28 30.16 78.29 30.33 78.29

Model-3

Sigmoid 31.13 78.24 30.99 78.26 30.98 78.27

Softmax 30.76 1.83 31.07 1.83 31.43 1.83

ReLU 31.32 78.31 31.64 78.31 31.7 78.31

tanh 32.01 78.31 32.37 78.31 32.61 78.31

Exponential 32.89 78.31 32.30 78.31 31.97 78.31

AdaGrad

Model-1

Sigmoid 17.06 78.31 17.02 78.31 17.02 78.31

Softmax 17.01 1.83 17.08 1.83 17.26 1.83

ReLU 17.02 78.31 17.23 78.31 17.16 78.31

tanh 17.05 78.31 17.04 78.31 17.01 78.31

Exponential 17.03 78.31 17.02 78.31 17.01 78.31

Model-2

Sigmoid 34.47 78.30 34.36 78.31 34.96 78.31

Softmax 34.82 1.83 34.95 1.83 35.01 1.83

ReLU 34.98 78.31 35.2 78.31 35.11 78.31

tanh 35.18 78.31 33.77 78.31 33.83 78.31

Exponential 33.85 78.29 34.02 78.29 36.26 78.29

Model-3

Sigmoid 32.76 78.31 32.88 78.31 32.83 78.31

Softmax 32.29 1.83 31.99 1.83 31.99 1.83

ReLU 32.78 78.31 32.77 78.31 32.01 78.31

tanh 31.88 78.31 31.86 78.31 32.06 78.31

Exponential 32.02 78.31 32.1 78.31 32.13 78.31

Table 2 (continue)

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Optimizer
model

LSTM
architecture

Activation
function

α = 0.1 α = 0.01 α = 0.001
TT

(min)
TA
(%)

TT
(min)

TA
(%)

TT
(min)

TA
(%)

AdaDelta

Model-1

Sigmoid 20.63 78.31 21.4 78.31 21.03 78.31

Softmax 21.03 1.83 21.04 1.83 21.1 1.83

ReLU 21.04 78.31 21.09 78.31 21.03 78.31

tanh 21.06 78.31 21.03 78.31 21.03 78.31

Exponential 21.10 74.92 21.06 74.93 21.09 74.94

Model-2

Sigmoid 34.58 78.31 34.17 78.31 34.33 78.31

Softmax 34.67 1.83 35.03 1.83 34.71 1.83

ReLU 34.90 78.31 34.94 78.31 34.93 78.31

tanh 35.01 78.31 33.06 78.31 33.37 78.31

Exponential 33.3 78.29 33.58 78.29 35.92 78.29

Model-3

Sigmoid 31.48 78.31 31.53 78.31 31.13 78.31

Softmax 31.62 1.83 31.85 1.83 31.63 1.83

ReLU 32.77 78.31 32.8 78.31 32.69 78.31

tanh 32.15 78.31 31.68 78.31 31.42 78.31

Exponential 31.16 74.73 31.42 74.66 31.42 74.66

NADAM

Model-1

Sigmoid 21.99 78.31 21.17 78.31 21.05 78.31

Softmax 21.08 1.83 21.06 1.83 21.09 1.83

ReLU 21.06 78.31 21.11 78.31 21.13 78.31

tanh 21.08 78.31 21.11 78.31 21.09 78.31

Exponential 21.1 78.31 21.28 78.31 20 78.31

Model-2

Sigmoid 33.38 78.31 33.37 78.31 33.46 78.31

Softmax 33.98 1.83 34.05 1.83 34.05 1.83

ReLU 34.05 78.31 34.03 78.31 34.04 78.31

tanh 34.53 78.31 35.58 78.31 35.52 78.31

Exponential 35.18 78.31 34.99 78.31 34.90 78.31

Model-3

Sigmoid 31.97 75.06 31.17 75.10 31.28 75.09

Softmax 31.54 1.83 31.61 1.83 31.73 1.83

ReLU 31.64 78.31 31.46 78.31 31.36 78.31

tanh 31.65 78.31 31.8 78.31 31.94 78.31

Exponential 31.14 78.31 31.36 78.31 32.11 78.31

Table 2 (continue)

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Optimizer
model

LSTM
architecture

Activation
function

α = 0.1 α = 0.01 α = 0.001
TT

(min)
TA
(%)

TT
(min)

TA
(%)

TT
(min)

TA
(%)

AdaMax

Model-1

Sigmoid 17.07 78.24 17.06 78.27 17.03 78.29

Softmax 17.83 1.83 17.86 1.83 18.03 1.83

ReLU 18.04 78.31 18.07 78.31 18.69 78.31

tanh 18.97 78.31 20.01 78.31 20.1 78.31

Exponential 20.74 78.31 20.97 78.31 21.45 78.31

Model-2

Sigmoid 33.90 78.29 33.27 78.25 33.53 78.27

Softmax 33.72 1.83 33.86 1.83 33.94 1.83

ReLU 33.83 78.31 33.72 78.31 33.89 78.31

tanh 34.28 78.31 35.49 78.31 35.34 78.31

Exponential 34.74 78.30 34.6 78.28 34.63 78.28

Model-3

Sigmoid 31.25 78.21 31.13 77.74 31.23 78.20

Softmax 31.68 1.83 31.5 1.83 31.63 1.83

ReLU 31.36 78.31 31.50 78.31 31.39 78.31

tanh 31.26 78.31 31.45 78.31 31.5 78.31

Exponential 31.69 75.46 31.98 76.28 31.92 76.56

Note. TT = Training time; TA = Training accuracy; ADAM = Adaptive Moment Estimation;
RMSProp = Root Mean Square Propagation; SGD = Stochastic Gradient Descent; AdaGrad = Adaptive Gradient
Algorithm; AdaDelta = Adaptive Delta; NADAM = Nesterov-accelerated Adaptive Moment Estimation;
AdaMax = Adaptive Moment Estimation with Infinity Norm

Enclosed is the comprehensive summary of the analysis conducted on each optimizer:

1. The best performance of the ADAM optimizer is found using the LSTM architecture
Model-1 with the tanh activation function, and the learning rate of 0.1, respectively.
Moreover, the ADAM optimizer performs well using the sigmoid, tanh, and exponential
activation functions, exhibiting the lowest running time and highest test accuracy.
However, the ADAM optimizer shows significantly higher running time and lower
test accuracy using the Softmax and ReLU activation functions compared to the tanh,
sigmoid and exponential activation functions.

2. The RMSprop produces the best performance using the LSTM architecture Model-1
with the sigmoid activation function and the learning rate of 0.01. However, RMSprop
shows poor performance in terms of high running time and low accuracy value for
each configuration using the Softmax activation function.

Table 2 (continue)

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

3. The SGD performs well in most combinations of activation functions and learning
rates, wherein the lowest running time and highest test accuracy achieved using the
sigmoid and ReLU activation functions. However, the SGD exhibits higher running
time and lower test accuracy using the Softmax activation functions compared to the
tanh and exponential activation functions.

4. The AdaGrad performs well using the sigmoid, tanh and exponential activation
functions. However, the AdaGrad shows the worst performance using the Softmax
activation function followed by the ReLU activation function with the highest running
time and lowest test accuracy.

5. In general, the AdaDelta performs well using the sigmoid, ReLU and tanh activation
functions in each configuration. The AdaDelta performs poorly, with the highest running
time and lowest test accuracy using the Softmax activation function.

6. NADAM has quite poor performance compared to other optimizer models for each
configuration.

7. The AdaMax performs well using the sigmoid and ReLU activation functions with a
learning rate of 0.01 and 0.001, exhibiting the lowest running time and highest test
accuracy. However, AdaMax shows higher running time and lower test accuracy for
each configuration using the Softmax activation function compared to others.

In sum, the two best optimizers in terms of less training time and high accuracy are
AdaGrad and SGD optimizers. Both AdaGrad and SGD optimizers perform well across a
wide range of activation functions, Precisely, both optimizers achieve high accuracy and
low running time across a wide range of models and optimizers, particularly effective
with exponential and sigmoid. While SGD is an easy and widely used method, AdaGrad
offers more adaptive and efficient updates, making it particularly suitable for sparse data
and tasks where the learning rate needs to be adjusted dynamically (Alzubaidi et al., 2021;
Duchi et al., 2011). Where its application is suitable for the case in this study which has
large amounts of data or high-dimensional data. AdaGrad and SGD perform better than
others due to their enhanced efficiency and robustness against noisy data. Additionally, they
dynamically adjust the learning rate for each model parameter, which helps to avoid the
issue of vanishing gradients. This combination of efficient updates and adaptive learning
rates enables these optimizers to effectively optimize DL models (Solanke & Patnaik, 2020).

Moreover, the two best activation functions are sigmoid and exponential. The choice of
sigmoid or exponential activation function significantly impacts the training time of neural
network models. Both sigmoid and exponential activation functions provide a continuous
output range, which facilitates efficient updates by the optimizers (Yi et al., 2020). This is
particularly important for SGD and AdaGrad, which rely on the gradient of the loss function
calculated for a single training example or a small batch of examples. The continuous output

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

range of sigmoid and exponential activation functions also helps in reducing the impact
of noisy data on the model's performance (Yi et al., 2020), which is crucial for optimizers
like SGD and AdaGrad. Additionally, the continuous output range helps in adapting the
learning rate for each model parameter, which is particularly important for AdaGrad.

Both sigmoid and exponential activation functions consistently perform well across
different optimizers and activation functions, providing a continuous output range that
facilitates efficient updates and robustness to noisy data. In contrast, activation functions
like Softmax and ReLU may result in poorer performance due to their discrete output
ranges. The interaction between optimizers and activation functions is crucial, and selecting
the right combination of optimizer and activation function is essential for a specific task.
Overall, the choice of sigmoid or exponential activation function plays a significant role
in the performance of NN models, and it is crucial to experiment with different optimizers
and activation functions to find the best combination for a specific task and dataset (Zou et
al., 2019). In summary, the sigmoid and exponential activation functions are particularly
effective with AdaGrad and SGD due to their continuous output range, non-linearity,
robustness to noise, efficient updates, learning rate adaptation, robustness to local minima,
performance across activation functions, and theoretical analysis. These characteristics
make them well-suited for DL models and ensure that they can learn and represent complex
patterns in the data, effectively (Mehmood et al., 2023).

Meanwhile, the Softmax activation function has very poor performance due to not
providing optimal performance across different models and optimizers. This is because
the special properties of the Softmax function, which are non-sparsity and potential
vanishing gradients hinder the optimization process, hence generate the overfitting problem.
Consequently, the Softmax function in the LSTM architecture does not provide a clear
separation between classes, leading to poor generalization performance.

In addition to that, the Softmax activation function consistently performs poorly
across different models due to several reasons. Firstly, the Softmax activation function
produces output values between 0 and 1, leading to a loss of information and a decrease
in the model's ability to learn complex patterns in the data. Additionally, the Softmax
activation function is not as non-linear as other activation functions like sigmoid, tanh, and
exponential, which can lead to a loss of information and a decrease in the model's ability to
learn complex patterns in the data. The gradient calculation for Softmax can also be more
complex and sensitive to the input values, leading to a loss of information and a decrease
in the model's ability to learn complex patterns in the data (Shen et al., 2023; Szandała ,
2020). Furthermore, the optimization algorithms used in the experiments, such as ADAM,
RMSprop, SGD, and AdaGrad, may not be well-suited for the Softmax activation function,
leading to poor performance.

The results for the accuracy of the different optimization algorithms used in this study
are simply laid out from Figures 5 to 11, each giving insight into how well the models

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

performed with the same experimental setup. Starting with Figure 5, it shows how the
ADAM optimizer performed, giving a baseline to compare against. Figure 6 goes on with
RMSProp results, and Figure 7 presents the accuracy obtained using Stochastic Gradient
Descent (SGD). Figure 8 then presents how AdaGrad fared, and Figure 9 goes on with
results from AdaDelta. Figure 10 presents NADAM's performance, which is essentially
an enhanced version of ADAM with Nesterov momentum. Lastly, Figure 11 presents
the accuracy results for AdaMax, yet another infinity norm-based variant of ADAM.
Collectively, these figures facilitate the comparison and visualization of the strengths of
each optimizer in a consistent way. The comparison of accuracy results for each
model or optimization algorithm using the experiment's current setups is shown
graphically in the following.

Figure 5. Accuracy result (ADAM)

Figure 6. Accuracy result (RMSProp)

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Based on the analysis of the results of the studies and experiments that have been
presented, some things that can be highlights are the importance of choosing the right
optimizer model and hyperparameters for a specific problem. It also emphasizes the need for
further research to better understand the interactions between these factors and their impact
on model performance. Identify potential future directions for research in this area, such as
exploring new optimization algorithms or activation functions, or integrating optimization
algorithms with other DL techniques. Furthermore, the performance of the optimization
algorithms and activation functions can be compared possibly using other methods.

Figure 7. Accuracy result (SGD)

Figure 8. Accuracy result (AdaGrad)

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Figure 9. Accuracy result (AdaDelta)

Figure10. Accuracy result (NADAM)

Figure 11. Accuracy result (AdaMax)

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

CONCLUSION

This study aims to compare the performance of seven widely used GD optimization
algorithms on RNN architecture using body motion datasets from the UCI ML repository.
The optimization techniques compared are ADAM, RMSprop, SGD, AdaGrad, AdaDelta,
NADAM, and AdaMax. Precisely, the study is done across different combinations of
optimizer models, LSTM architectures, activation functions, and learning rates. The results
show that the AdaGrad model with both exponential and sigmoid activation functions and
a learning rate of 0.001 has the best performance, with a training time of 17.1 minutes and
a test accuracy of 78.31%, respectively.

Moreover, the study also highlights the importance of selecting the optimal optimization
algorithm for RNN training given specific properties of the training data. The findings
suggest that the exponential activation function consistently performs well across different
models and optimizers in most cases, whereas the Softmax activation function consistently
performs poorly in all cases. Finally, this study also contributes to the understanding of
how different optimizers handle the challenge of determining the best and most suitable
training parameters utilizing accuracy and training duration as performance metrics. The
results provide valuable insights for researchers and practitioners in the field of DL and
optimization.

ACKNOWLEDGMENTS

The author sincerely thanks Assoc. Prof. Ts. Dr. Khairul Najmy Rani and Assoc. Prof. Ts.
Dr. Amiza Amir for all the insights and suggestions in realizing this paper.

REFERENCES
Adem, K., & Kiliçarslan, S. (2019). Performance analysis of optimization algorithms on stacked autoencoder.

In 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (pp. 1-4). IEEE.
https://doi.org/10.1109/ISMSIT.2019.8932880

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A.,
Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions. Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537-021-00444-8

Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., & Villalonga, C.
(2014). mHealthDroid: A novel framework for agile development of mobile health applications. In L.
Pecchia, L. L. Chen, C. Nugent, & J. Bravo (Eds.), Ambient assisted living and daily activities (pp. 91–98).
Springer. https://doi.org/10.1007/978-3-319-13105-4_14

Chandra, K., Xie, A., Ragan-Kelley, J., & Meijer, E. (2022). Gradient descent: The ultimate optimizer. In
NIPS'22: Proceedings of the 36th International Conference on Neural Information Processing Systems
(pp. 8214-8225). Associaton for Computing Machinery.

PREPRINT

Model-comparative Study of Gradient Descent Methods in DL

Chen, W., Zheng, F., Gao, S., & Hu, K. (2022). An LSTM with differential structure and its application in
action recognition. Mathematical Problems in Engineering, 2022(1), 7316396. https://doi.org/https://
doi.org/10.1155/2022/7316396

Dogo, E. M., Afolabi, O. J., Nwulu, N. I., Twala, B., & Aigbavboa, C. O. (2018). A comparative analysis of
gradient descent-based optimization algorithms on convolutional neural networks. In 2018 International
Conference on Computational Techniques, Electronics and Mechanical Systems (pp. 92-99). IEEE. https://
doi.org/10.1109/CTEMS.2018.8769211

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12, 2121-2159.

Ethem, A. (2020). Introduction to machine learning (4th ed.). The MIT Press.

Fatima, N. (2020). Enhancing performance of a deep neural network: A comparative analysis of optimization
algorithms. Advances in Distributed Computing and Artificial Intelligence Journal, 9(2), 79–90. https://
doi.org/10.14201/adcaij2020927990

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.

Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization techniques based on gradient descent
algorithm: A review. PalArch’s Journal of Archaeology of Egypt / Egyptology, 18(4), 2715–2743.

Hallén, R. (2017). A study of gradient-based algorithms. http://lup.lub.lu.se/luur/download?func=downloadF
ile&recordOId=8904399&fileOId=8904400

Hinton, G., & Tieleman, T. (2012). Lecture 6.5 - Rmsprop: Divide the gradient by a running average of its
recent magnitude. Neural Networks for Machine Learning, 4, 26-31.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Karna, V. V. R., Karna, V. R., Janamala, V., Devana, V. N. K. R., Ch, V. R. S., & Tummala, A. B. (2024).
A comprehensive review on heart disease risk prediction using machine learning and deep learning
algorithms. Archives of Computational Methods in Engineering, 32, 1763-1795. https://doi.org/10.1007/
s11831-024-10194-4

Kingma, D. P., & Ba, J. L. (2015). ADAM: A method for stochastic optimization. arXiv. https://doi.org/10.48550/
arXiv.1412.6980

Lv, K., Jiang, S., & Li, J. (2017). Learning gradient descent: Better generalization and longer horizons. arXiv.
https://doi.org/10.48550/arXiv.1703.03633

Mehmood, F., Ahmad, S., & Whangbo, T. K. (2023). An efficient optimization technique for training deep
neural networks. Mathematics, 11(6), 1360. https://doi.org/10.3390/math11061360

Miljanovic, M. (2012). Comparative analysis of recurrent and finite impulse response neural networks in time
series prediction. Indian Journal of Computer Science and Engineering, 3(1), 180–191.

Papamakarios, G. (2014). Comparison of modern stochastic optimization algorithms. University of Edinburgh.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv. https://doi.org/10.48550/
arXiv.1609.04747

PREPRINT

Zulfikar Sembiring, Khairul Najmy Abdul Rani and Amiza Amir

Schaul, T., Antonoglou, I., & Silver, D. (2013). Unit tests for stochastic optimization. arXiv. https://doi.
org/10.48550/arXiv.1312.6055

Seeli, D. J. J., & Thanammal, K. K. (2024). Quantitative analysis of gradient descent algorithm using scaling
methods for improving the prediction process based on Artificial Neural Network. Multimedia Tools and
Applications, 83, 15677–15691. https://doi.org/10.1007/s11042-023-16136-9

Shalev-Shwartz, S., Shamir, O., & Shammah, S. (2017). Failures of gradient-based deep learning. arXiv.
https://doi.org/10.48550/arXiv.1703.07950

Shen, K., Guo, J., Tan, X., Tang, S., Wang, R., & Bian, J. (2023). A study on ReLU and Softmax in Transformer.
arXiv. https://doi.org/10.48550/arXiv.2302.06461

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.
physd.2019.132306

Solanke, A. V., & Patnaik, G. K. (2020). Intrusion detection using deep learning approach with different
optimization. International Journal for Research in Applied Science and Engineering Technology, 8(5),
128–134. https://doi.org/10.22214/ijraset.2020.5022

Sun, R. (2019). Optimization for deep learning: Theory and algorithms. arXiv. https://doi.org/10.48550/
arXiv.1912.08957

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in
deep learning. Proceedings of the 30th International Conference on Machine Learning, 28(3), 1139-1147.

Szandała , T. (2020). Review and comparison of commonly used activation functions for deep neural networks.
In A. K. Bhoi, P. K. Mallick, C.-M. Liu, & V. E. Balas (Eds.), Bio-inspired neurocomputinge (Vol. 903,
pp. 203-224). Springer. https://doi.org/10.1007/978-981-15-5495-7_11

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial
Intelligence Review, 53, 5929–5955. https://doi.org/10.1007/s10462-020-09838-1

Yazan, E., & Talu, M. F. (2017). Comparison of the stochastic gradient descent based optimization techniques.
In 2017 International Artificial Intelligence and Data Processing Symposium (pp. 1-5). IEEE. https://
doi.org/10.1109/idap.2017.8090299

Yi, D., Ahn, J., & Ji, S. (2020). An effective optimization method for machine learning based on ADAM.
Applied Sciences, 10(3), 1073. https://doi.org/10.3390/app10031073

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv. https://doi.org/10.48550/
arXiv.1212.5701

Zou, F., Shen, L., Jie, Z., Zhang, W., & Liu, W. (2019). A sufficient condition for convergences of ADAM
and RMSProp. In 2019 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 11119–11127). IEEE. https://doi.org/10.1109/CVPR.2019.01138

